PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

Related tags

Deep Learningtupe
Overview

TUPE

PyTorch implementation of Rethinking Positional Encoding in Language Pre-training.

alt text

Quickstart

Clone this repository.

git clone https://github.com/jaketae/tupe.git

Navigate to the cloned directory. You can use the bare-bone TUPE Encoder model via

>>> import torch; from tupe import TUPEConfig, TUPEEncoder
>>> config  = TUPEConfig()
>>> model = TUPEEncoder(config)
>>> x = torch.randn(8, 100, 128)
>>> model(x).shape
torch.Size([8, 100, 128])

By default, the model comes with the following parameters:

TUPEConfig(
    num_layers=6, 
    num_heads=8, 
    d_model=128, 
    d_head=16, 
    max_len=256, 
    dropout=0.1, 
    expansion_factor=1, 
    relative_bias=True, 
    bidirectional_bias=True, 
    num_buckets=32, 
    max_distance=128
)

Abstract

In this work, we investigate the positional encoding methods used in language pre- training (e.g., BERT) and identify several problems in the existing formulations. First, we show that in the absolute positional encoding, the addition operation applied on positional embeddings and word embeddings brings mixed correlations between the two heterogeneous information resources. It may bring unnecessary randomness in the attention and further limit the expressiveness of the model. Sec- ond, we question whether treating the position of the symbol [CLS] the same as other words is a reasonable design, considering its special role (the representation of the entire sentence) in the downstream tasks. Motivated from above analysis, we propose a new positional encoding method called Transformer with Untied Positional Encoding (TUPE). In the self-attention module, TUPE computes the word contextual correlation and positional correlation separately with different parameterizations and then adds them together. This design removes the mixed and noisy correlations over heterogeneous embeddings and offers more expres- siveness by using different projection matrices. Furthermore, TUPE unties the [CLS] symbol from other positions, making it easier to capture information from all positions. Extensive experiments and ablation studies on GLUE benchmark demonstrate the effectiveness of the proposed method.

Implementation Notes

  • The default configuration follows TUPE-R, which includes T5's relative position bias. To use TUPE-A, simply toggle TUPEConfig.relative_bias field to False.
  • To avoid limiting the use case of this architecture to BERT-type models with [CLS] tokens, this implementation purposefully omits Section 3.2, on untying the [CLS] symbol from positions.

Citation

@inproceedings{ke2021rethinking,
	title        = {Rethinking Positional Encoding in Language Pre-training},
	author       = {Guolin Ke and Di He and Tie-Yan Liu},
	year         = 2021,
	booktitle    = {International Conference on Learning Representations},
	url          = {https://openreview.net/forum?id=09-528y2Fgf}
}
Owner
Jake Tae
CS + Math @ Yale, SWE intern @huggingface
Jake Tae
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
The fastai book, published as Jupyter Notebooks

English / Spanish / Korean / Chinese / Bengali / Indonesian The fastai book These notebooks cover an introduction to deep learning, fastai, and PyTorc

fast.ai 17k Jan 07, 2023
Data for "Driving the Herd: Search Engines as Content Influencers" paper

herding_data Data for "Driving the Herd: Search Engines as Content Influencers" paper Dataset description The collection contains 2250 documents, 30 i

0 Aug 17, 2021
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022