Learned image compression

Overview

Overview

Pytorch code of our recent work A Unified End-to-End Framework for Efficient Deep Image Compression.

We first release the code for Variational image compression with a scale hyperprior, we will update our code to our full implementaion of our paper.

Content

Prerequisites

You should install the libraries of this repo.

pip install -r requirements.txt

Data Preparation

We need to first prepare the training and validation data. The trainging data is from flicker.com. You can obtain the training data according to description of CompressionData.

The validation data is the popular kodak dataset.

bash data/download_kodak.sh

Training

For high bitrate (4096, 6144, 8192), the out_channel_N is 192 and the out_channel_M is 320 in 'config_high.json'. For low bitrate (256, 512, 1024, 2048), the out_channel_N is 128 and the out_channel_M is 192 in 'config_low.json'.

Details

PSNR experiments.

For high bitrate of 8192, we first train from scratch as follows.

CUDA_VISIBLE_DEVICES=0 python train.py --config examples/example/config_high.json -n baseline_8192 --train flicker_path --val kodak_path

For other high bitrate (4096, 6144), we use the converged model of 8192 as pretrain model and set the learning rate as 1e-5. The training iterations are set as 500000.

The low bitrate (256, 512, 1024, 2048) training process follows the same strategy.

MS-SSIM experiments

You should change the distorsion loss to (1-MS_SSIM), and fine-tune the pretrained model optimized by PSNR to accelerate the training process. You can find more details in our released paper. The training strategy is similar.

If your find our code is helpful for your research, please cite our paper. Besides, this code is only for research.

@article{liu2020unified,
  title={A Unified End-to-End Framework for Efficient Deep Image Compression},
  author={Liu, Jiaheng and Lu, Guo and Hu, Zhihao and Xu, Dong},
  journal={arXiv preprint arXiv:2002.03370},
  year={2020}
}
Owner
Jiaheng Liu
Ph.D. Student
Jiaheng Liu
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023