DeLighT: Very Deep and Light-Weight Transformers

Related tags

Deep Learningdelight
Overview

DeLighT: Very Deep and Light-weight Transformers

This repository contains the source code of our work on building efficient sequence models: DeFINE (ICLR'20) and DeLighT (preprint).

Table of contents

  1. Overview
  2. Requirements and installation
  3. Training, evaluation, and results
  4. Multiplication-addition operations
  5. Citation
  6. Acknowledgement
  7. Issues

Overview

In this repository, we share the source code of our paper DeLight, that delivers similar or better performance than transformer-based models with significantly fewer parameters. DeLighT more efficiently allocates parameters both (1) within each Transformer block using DExTra, a deep and light-weight transformation and (2) across blocks using block-wise scaling, that allows for shallower and narrower DeLighT blocks near the input and wider and deeper DeLighT blocks near the output. Overall, DeLighT networks are 2.5 to 4 times deeper than standard transformer models and yet have fewer parameters and operations. For details, see our papers: DeFINE and and DeLighT.

DeLighT unit

Requirements and Installation

  • PyTorch version >= 1.4.0
  • Python version >= 3.6
  • For training new models, you'll also need an NVIDIA GPU and NCCL
  • To use DeLighT, you need to install fairseq and develop locally:
git clone https://github.com/sacmehta/delight
cd delight
pip install --editable ./
  • For faster training install NVIDIA's apex library:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./

Training, Evaluation, and Results

For training, evaluation, and results, see below links. To ease reproduction of our results, we also provide links to training logs.

Neural machine translation

Language Modeling

Multiplication-Addition Operations

We have added module profiling for both Transformer and DeLight networks. This can be enabled using --print-stats argument. A model summary will be printed (by default for 20 tokens), similar to below screenshot. To use larger sequence lengths for source and target for profiling statistics, you can use --src-len-ps and --tgt-len-ps flags.

Model statistics

Citation

If you find our work useful, please consider citing following works:

@misc{mehta2020delight,
    title={DeLighT: Very Deep and Light-weight Transformer},
    author={Sachin Mehta and Marjan Ghazvininejad and Srinivasan Iyer and Luke Zettlemoyer and Hannaneh Hajishirzi},
    year={2020},
    eprint={2008.00623},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
@inproceedings{mehta2019define,
  title={DeFINE: Deep Factorized Input Token Embeddings for Neural Sequence Modeling},
  author={Mehta, Sachin and Koncel-Kedziorski, Rik and Rastegari, Mohammad and Hajishirzi, Hannaneh},
  booktitle={International Conference on Learning Representations},
  year={2019}
}

Acknowledgements

We would like to thank Fairseq team for building easy-to-use sequence library.

Issues

Thanks for your interest in our work. For any issues, please raise a request.

Owner
Sachin Mehta
Ph.D. Student at University of Washington
Sachin Mehta
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Paddle-PANet 目录 结果对比 论文介绍 快速安装 结果对比 CTW1500 Method Backbone Fine

7 Aug 08, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Sinkformers: Transformers with Doubly Stochastic Attention

Code for the paper : "Sinkformers: Transformers with Doubly Stochastic Attention" Paper You will find our paper here. Compat This package has been dev

Michael E. Sander 31 Dec 29, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
A python script to lookup Passport Index Dataset

visa-cli A python script to lookup Passport Index Dataset Installation pip install visa-cli Usage usage: visa-cli [-h] [-d DESTINATION_COUNTRY] [-f]

rand-net 16 Oct 18, 2022
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
Controlling the MicriSpotAI robot from scratch

Abstract: The SpotMicroAI project is designed to be a low cost, easily built quadruped robot. The design is roughly based off of Boston Dynamics quadr

Florian Wilk 405 Jan 05, 2023