[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Related tags

Deep LearningMCL
Overview

Mutual Contrastive Learning for Visual Representation Learning

This project provides source code for our Mutual Contrastive Learning for Visual Representation Learning (MCL).

Installation

Requirements

Ubuntu 18.04 LTS

Python 3.8 (Anaconda is recommended)

CUDA 11.1

PyTorch 1.7.0

NCCL for CUDA 11.1

Supervised Learning on CIFAR-100 dataset

Dataset

CIFAR-100 : download

unzip to the ./data folder

Training two baseline networks

python main_cifar.py --arch resnet32 --number-net 2

More commands for training various architectures can be found in scripts/train_cifar_baseline.sh

Training two networks by MCL

python main_cifar.py --arch resnet32  --number-net 2 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. 

More commands for training various architectures can be found in scripts/train_cifar_mcl.sh

Results of MCL on CIFAR-100

We perform all experiments on a single NVIDIA RTX 3090 GPU (24GB) with three runs.

Network Baseline MCL(×2) MCL(×4)
ResNet-32 70.91±0.14 72.96±0.28 74.04±0.07
ResNet-56 73.15±0.23 74.48±0.23 75.74±0.16
ResNet-110 75.29±0.16 77.12±0.20 78.82±0.14
WRN-16-2 72.55±0.24 74.56±0.11 75.79±0.07
WRN-40-2 76.89±0.29 77.51±0.42 78.84±0.22
HCGNet-A1 77.42±0.16 78.62±0.26 79.50±0.15
ShuffleNetV2 0.5× 67.39±0.35 69.55±0.22 70.92±0.28
ShuffleNetV2 1× 70.93±0.24 73.26±0.18 75.18±0.25

Training multiple networks by MCL combined with Logit distillation

python main_cifar.py --arch WRN_16_2  --number-net 4 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. \
    --logit-distill

More commands for training various architectures can be found in scripts/train_cifar_mcl_logit.sh

Results of MCL combined with logit distillation on CIFAR-100

We perform all experiments on a single NVIDIA RTX 3090 GPU (24GB) with three runs.

Network Baseline MCL(×4)+Logit KD
WRN-16-2 72.55±0.24 76.34±0.22
WRN-40-2 76.89±0.29 80.02±0.45
WRN-28-4 79.17±0.29 81.68±0.31
ShuffleNetV2 1× 70.93±0.24 77.02±0.32
HCGNet-A2 79.00±0.41 82.47±0.20

Supervised Learning on ImageNet dataset

Dataset preparation

  • Download the ImageNet dataset to YOUR_IMAGENET_PATH and move validation images to labeled subfolders

  • Create a datasets subfolder and a symlink to the ImageNet dataset

$ ln -s PATH_TO_YOUR_IMAGENET ./data/

Folder of ImageNet Dataset:

data/ImageNet
├── train
├── val

Training two networks by MCL

python main_cifar.py --arch resnet18  --number-net 2 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. 

More commands for training various architectures can be found in scripts/train_imagenet_mcl.sh

Results of MCL on ImageNet

We perform all experiments on a single NVIDIA Tesla V100 GPU (32GB) with three runs.

Network Baseline MCL(×2) MCL(×4)
ResNet-18 69.76 70.32 70.77
ResNet-34 73.30 74.13 74.34

Training two networks by MCL combined with logit distillation

python main_cifar.py --arch resnet18  --number-net 2 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. 

More commands for training various architectures can be found in scripts/train_imagenet_mcl.sh

Results of MCL combined with logit distillation on ImageNet

We perform all experiments on a single NVIDIA Tesla V100 GPU (32GB) with three runs.

Network Baseline MCL(×4)+Logit KD
ResNet-18 69.76 70.82

Self-Supervised Learning on ImageNet dataset

Apply MCL(×2) to MoCo

python main_moco_mcl.py \
  -a resnet18 \
  --lr 0.03 \
  --batch-size 256 \
  --number-net 2 \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed \
  --world-size 1 \
  --rank 0 \
  --gpu-ids 0,1,2,3,4,5,6,7 

Linear Classification

python main_lincls.py \
  -a resnet18 \
  --lr 30.0 \
  --batch-size 256 \
  --pretrained [your checkpoint path]/checkpoint_0199.pth.tar \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed \
  --world-size 1 \
  --rank 0 \
  --gpu-ids 0,1,2,3,4,5,6,7 

Results of applying MCL to MoCo on ImageNet

We perform all experiments on 8 NVIDIA RTX 3090 GPUs with three runs.

Network Baseline MCL(×2)
ResNet-18 47.45±0.11 48.04±0.13

Citation

@inproceedings{yang2022mcl,
  title={Mutual Contrastive Learning for Visual Representation Learning},
  author={Chuanguang Yang, Zhulin An, Linhang Cai, Yongjun Xu},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2022}
}
Owner
winycg
winycg
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022