[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Related tags

Deep LearningMCL
Overview

Mutual Contrastive Learning for Visual Representation Learning

This project provides source code for our Mutual Contrastive Learning for Visual Representation Learning (MCL).

Installation

Requirements

Ubuntu 18.04 LTS

Python 3.8 (Anaconda is recommended)

CUDA 11.1

PyTorch 1.7.0

NCCL for CUDA 11.1

Supervised Learning on CIFAR-100 dataset

Dataset

CIFAR-100 : download

unzip to the ./data folder

Training two baseline networks

python main_cifar.py --arch resnet32 --number-net 2

More commands for training various architectures can be found in scripts/train_cifar_baseline.sh

Training two networks by MCL

python main_cifar.py --arch resnet32  --number-net 2 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. 

More commands for training various architectures can be found in scripts/train_cifar_mcl.sh

Results of MCL on CIFAR-100

We perform all experiments on a single NVIDIA RTX 3090 GPU (24GB) with three runs.

Network Baseline MCL(×2) MCL(×4)
ResNet-32 70.91±0.14 72.96±0.28 74.04±0.07
ResNet-56 73.15±0.23 74.48±0.23 75.74±0.16
ResNet-110 75.29±0.16 77.12±0.20 78.82±0.14
WRN-16-2 72.55±0.24 74.56±0.11 75.79±0.07
WRN-40-2 76.89±0.29 77.51±0.42 78.84±0.22
HCGNet-A1 77.42±0.16 78.62±0.26 79.50±0.15
ShuffleNetV2 0.5× 67.39±0.35 69.55±0.22 70.92±0.28
ShuffleNetV2 1× 70.93±0.24 73.26±0.18 75.18±0.25

Training multiple networks by MCL combined with Logit distillation

python main_cifar.py --arch WRN_16_2  --number-net 4 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. \
    --logit-distill

More commands for training various architectures can be found in scripts/train_cifar_mcl_logit.sh

Results of MCL combined with logit distillation on CIFAR-100

We perform all experiments on a single NVIDIA RTX 3090 GPU (24GB) with three runs.

Network Baseline MCL(×4)+Logit KD
WRN-16-2 72.55±0.24 76.34±0.22
WRN-40-2 76.89±0.29 80.02±0.45
WRN-28-4 79.17±0.29 81.68±0.31
ShuffleNetV2 1× 70.93±0.24 77.02±0.32
HCGNet-A2 79.00±0.41 82.47±0.20

Supervised Learning on ImageNet dataset

Dataset preparation

  • Download the ImageNet dataset to YOUR_IMAGENET_PATH and move validation images to labeled subfolders

  • Create a datasets subfolder and a symlink to the ImageNet dataset

$ ln -s PATH_TO_YOUR_IMAGENET ./data/

Folder of ImageNet Dataset:

data/ImageNet
├── train
├── val

Training two networks by MCL

python main_cifar.py --arch resnet18  --number-net 2 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. 

More commands for training various architectures can be found in scripts/train_imagenet_mcl.sh

Results of MCL on ImageNet

We perform all experiments on a single NVIDIA Tesla V100 GPU (32GB) with three runs.

Network Baseline MCL(×2) MCL(×4)
ResNet-18 69.76 70.32 70.77
ResNet-34 73.30 74.13 74.34

Training two networks by MCL combined with logit distillation

python main_cifar.py --arch resnet18  --number-net 2 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. 

More commands for training various architectures can be found in scripts/train_imagenet_mcl.sh

Results of MCL combined with logit distillation on ImageNet

We perform all experiments on a single NVIDIA Tesla V100 GPU (32GB) with three runs.

Network Baseline MCL(×4)+Logit KD
ResNet-18 69.76 70.82

Self-Supervised Learning on ImageNet dataset

Apply MCL(×2) to MoCo

python main_moco_mcl.py \
  -a resnet18 \
  --lr 0.03 \
  --batch-size 256 \
  --number-net 2 \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed \
  --world-size 1 \
  --rank 0 \
  --gpu-ids 0,1,2,3,4,5,6,7 

Linear Classification

python main_lincls.py \
  -a resnet18 \
  --lr 30.0 \
  --batch-size 256 \
  --pretrained [your checkpoint path]/checkpoint_0199.pth.tar \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed \
  --world-size 1 \
  --rank 0 \
  --gpu-ids 0,1,2,3,4,5,6,7 

Results of applying MCL to MoCo on ImageNet

We perform all experiments on 8 NVIDIA RTX 3090 GPUs with three runs.

Network Baseline MCL(×2)
ResNet-18 47.45±0.11 48.04±0.13

Citation

@inproceedings{yang2022mcl,
  title={Mutual Contrastive Learning for Visual Representation Learning},
  author={Chuanguang Yang, Zhulin An, Linhang Cai, Yongjun Xu},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2022}
}
Owner
winycg
winycg
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Yoga - Yoga asana classifier for python

Yoga Asana Classifier Description Hi welcome to my new deep learning project "Yo

Programminghut 35 Dec 12, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022