Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

Overview

PortraitNet

Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019


Introduction

We propose a real-time portrait segmentation model, called PortraitNet, that can run effectively and efficiently on mobile device. PortraitNet is based on a lightweight U-shape architecture with two auxiliary losses at the training stage, while no additional cost is required at the testing stage for portrait inference.

Portrait segmentation applications on mobile device.


Experimental setup

Requirements

  • python 2.7
  • PyTorch 0.3.0.post4
  • Jupyter Notebook
  • pip install easydict matplotlib tqdm opencv-python scipy pyyaml numpy

Download datasets

  • EG1800 Since several image URL links are invalid in the original EG1800 dataset, we finally use 1447 images for training and 289 images for validation.

  • Supervise-Portrait Supervise-Portrait is a portrait segmentation dataset collected from the public human segmentation dataset Supervise.ly using the same data process as EG1800.


Training

Network Architecture

Overview of PortraitNet.

Training Steps

  • Download the datasets (EG1800 or Supervise-Portriat). If you want to training at your own dataset, you need to modify data/datasets.py and data/datasets_portraitseg.py.
  • Prepare training/testing files, like data/select_data/eg1800_train.txt and data/select_data/eg1800_test.txt.
  • Select and modify the parameters in the folder of config.
  • Start the training with single gpu:
cd myTrain
python2.7 train.py

Testing

In the folder of myTest:

  • you can use EvalModel.ipynb to test on testing datasets.
  • you can use VideoTest.ipynb to test on a single image or video.

Visualization

Using tensorboard to visualize the training process:

cd path_to_save_model
tensorboard --logdir='./log'

Download models

from Dropbox:

from Baidu Cloud:

PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
TResNet: High Performance GPU-Dedicated Architecture

TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I

426 Dec 28, 2022
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022