Time Dependent DFT in Tamm-Dancoff Approximation

Overview

image

Density Function Theory Program - kspy-tddft(tda)

This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff Approximation (TDA).

The Grid

I could have used a cube as a space grid and then taken Riemann sums to evaluate (there's a great YouTube series by James Johns where he develops a matlab HF program and shows how to convert it to DFT. In this he uses Riemann sums to evaluate the integrals in the DFT program.) However, I decided to try for a 'proper' atom centered spherical grid approach. A useful paper was PMW Gill, BG Johnson and JA Poples 'A standard grid for density functional theory', although I didn't use this SG-1 grid the paper helped understand the techniques involved. The grid I settled on was a coarse grid of (10,15) radial points for period 1 and period 2 elements respectively. The radial grid is a Mura-Knowles radial grid ME Mura and PJ Knowles 'Improved radial grids for quadrature in density-functional calculations' JCP 104, 9848 (1996); DOI:10.1063/1.471749. The 'coarse' angular grid is of Lebedev orders (11, 15) for period 1 and period 2 respectively. This translates into 50 and 86 points respectively arranged on a spherical shell (VI Lebedev, and DN Laikov, Doklady Mathematics, 'A Quadrature formula for the sphere of the 131st algebraic order of accuracy' Vol. 59, No. 3, (1999)). There are various sources for this data given in the external links of the wikipedia article on Lebedev integration. A pruning scheme is employed to systematically reduce the number of angular points in regions where dense angular quadrature is not necessary, such as near the nuclei where the charge density is approximately spherically symmetric and at long distance from the nucleus. The pruning scheme I employed was the Treutler-Aldrich scheme O Treutler and R Ahlrich, 'Efficient molecular numerical integration schemes' JCP 102, 346 (1995); DOI:10.1063/1.469408. The partitioning of the atomic centered grids to a molecular grid follows a Becke scheme after Stratmann RE Stratmann, GE Scuseria and MJ Frisch, 'Achieving Linear scaling in exchange-correlation density functional quadratures' CPL 257, 3-4 (1996); DOI:10.1016/009-2614(96)00600-8. Finally I have implemented a final radius adjustment during the partition (Becke suggests doing this) using the Bragg radius. A second 'close' grid is also included which is a (50, 75) radial and (29, 29) angular, the latter representing 302 points on each shell. The grid routines are in ks_grid.py.

The HF Integrals

To get the DFT SCF started we need an initial density. To do this I use a HF overlap matrix S, and an initial Fock matrix composed of the sum of the 1-electron kinetic and coulomb integrals (core Hamiltonian - T+V). This Fock is then orthogonalised (F') as (S-0.5)TFS-0.5, eigensolve the resulting orthogonal Fock for orbital coefficients C orthogonal, transform back to atomic basis as S-0.5C', use resulting ao coefficients to compute a density matrix Dμν = cμic where i is over occupied orbitals. This initial density can be used with initial Fock and 2-electron repulsion integrals to form the coulomb integral J (we don't want the HF exchange integral K for DFT). To get these integrals I've used a modified version of Harpy's Cython integral package aello. This version is slightly different from the version in kspy_lda in that the dipole routine returns the component matrices rather than the actual dipole, additionally the angular and nabla routines have been added. These are in ks_aello.pyx.

Molecule and Basis Sets

The molecule definition is contained in a mol object which is itself comprised of objects from an atom class. Each instance of the atom class contains the atom symbol, atomic number and the coordinates of the atom center (array[3]). The molecule is hard coded as H2O. The basis is contained in an orb object which is itself comprised of objects from a gaussian class. Each instance of the gaussian class contains the atom the Gaussian is centered on, the momentum(array[3]), the exponents (array[primatives], the coefficients (array[primatives]), the normalisation (array[primatives]) and a copy of the atom center coordinates (array[3]). The momenta are given as s [0,0,0] px [1,0,0] py [0,1,0] and pz [0,0,1]. The basis used is a simple STO-3G so we only require s and p orbitals. The primatives exponent and coefficient values are hard-coded in the main section. (I use the psi4 format of the basis sets from BSE which have some (small) differences from the nwchem format versions as used by eg pyscf. This might lead to numerical differences in values when using high precision).

The Functionals

The choice of functionals here was determined solely because htey have easily determined analytic derivatives. The second derivatives of the exchange-correlation energy are needed in TDDFT to determine the orbital Hessian for the coupling matrix. The exchange functional is Slater LDA and the correlation functional is RPA. For TDDFT we are working in a molecular spin basis so will use spin polarized versions of the functional (with α = β). The derivatives used are given below

image

TDDFT

Details of TDDFT can be found in Time-dependent density-functional theory for molecules and molecular solids, ME Casida, Journal of Molecular Structure: THEOCHEM 914 (2009) 3–18 and Single-Reference ab Initio Methods for the Calculation of Excited States of Large Molecules, A Dreuw and M Head-Gordon, Chem. Rev.2005,105,4009−4037. The basic equations for the excitation (de-excitation) energies are image

The calculation of singlet and triplet states is analogous to the spin-adapted CIS calculation in HF theory see. The class TDA is provided to compute the excitation energies and coefficients for either singlet or triplet states. The class provides a response property which is a tuple (energy, coefficients).

Response Properties

An example of calculating transition properties in TDDFT is given in this psicon 2020 document. We calculate the electric transition dipoles in both length (μ) and velocity (∇) gauges together with the associated oscillator strengths. Additionally the magnetic transition dipoles are calculated in the length (L) gauge and the rotary strengths in both gauges. All the previous properties are returned by the transition_properties method of the TDA_properties class.
A basic transition natural orbital treatment is available from the transition_NO method of the TDA_properties class. Martin, R. L., Journal of Chemical Physics, 118, 4775-4777.
A spectrum method of the TDA_properties class is provided to plot the spectrum of oscillator strengths in both gauges. This is all provided in the module ks_tda. See results.md for more details.

Owner
Peter Borthwick
Retired. M.Sc Mathematics (Kings', London), Ph.D in theoretical chemistry.
Peter Borthwick
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
Machine Learning Platform for Kubernetes

Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica

polyaxon 3.2k Dec 23, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022