Code for the paper "Attention Approximates Sparse Distributed Memory"

Overview

Attention Approximates Sparse Distributed Memory - Codebase

This is all of the code used to run analyses in the paper "Attention Approximates Sparse Distributed Memory" by Trenton Bricken and Cengiz Pehlevan.

Abstract

While Attention has come to be an important mechanism in deep learning, there remains limited intuition for why it works so well. Here, we show that Transformer Attention can be closely related under certain data conditions to Kanerva's Sparse Distributed Memory (SDM), a biologically plausible associative memory model. We confirm that these conditions are satisfied in pre-trained GPT2 Transformer models. We discuss the implications of the Attention-SDM map and provide new computational and biological interpretations of Attention.

Summary of Paper

The main contribution of this paper is to show that the Sparse Distributed Memory (SDM) theory developed in 1988 for how memories are written to and read from neurons, is a very close approximation to the heuristically developed and powerful Transformer Attention. This connection is compelling because SDM has biologically plausibility with the cerebellum in particular. SDM has a number of additional desireable properties that may lead to improvements in Deep Learning including (citations and explations for these statements provided in the paper):

  • Capable of modelling both auto and heteroassociative relationships.
  • Symbolic representations enabling variable binding, learning from example, analogical reasoning, and generalization.
  • Sparsity providing computational efficiency and robustness to noise.
  • Biological plausibility with striking similiarities to the cerebellum. Similarities that warrant further investigation are also present in cortical columns, the hippocampus, dorsal cochlear nucleus, and olfactory system in humans, insects and potentially even cephalopods.
  • Psychological plausibility including explaining the robust, distributed nature of memories, speed of recognition, tip of the tongue phenomena, Small World network between concepts.
  • Additional strong similarities to the Neural Turing Machine (NTM), and Differentiable Neural Computer (DNC).

Description of the Codebase

Jupyter Notebooks:

Used to run all code.

  • Softmax_Circle_Approx.ipynb - Computes the approximate circle intersection and shows how it relates to the softmax via the log linear regression to fit Beta in the exponential. This is the core contribution of our paper.

  • Exp_Approx_Circle_Intersect.ipynb - Implements and tests how well the exponential upper and lower bounds analytically derived for the circle intersection perform.

  • SDM_Experiments.ipynb - Calls on functions in Implementations_Associative_Memory.py and Data_Processing_Associative_Memory.py to test all of the Associative Memory algorithms considered: Neuron Based SDM; Pattern Based SDM with Infinite Neurons; Pattern Based SDM with Finite Neurons; Hopfield Network; Binary SDM with Attention with learnt Beta; SDM Attention with learnt Beta; Transformer Attention.

  • LearnProjections.ipynb - Also calls on functions in Implementations_Associative_Memory.py to learn a projection matrix for the MNIST and CIFAR datasets before testing how it affects the performance of continuous vectors that use three different weightings: Binary SDM Circle Intersection, Continuous SDM Hypersphere Cap Intersection, Attention Softmax with a Beta fitted to Binary SDM.

  • Neuron_Address_Distribution.ipynb - Computes the probability that at least one neuron is within a given Hamming distance of a random query.

  • SDM_Critical_Distances.ipynb - Plots the Critical Distances under different parameter assumptions.

  • HugFace/Transformer_Empirical_Analysis.ipynb - Computes the Betas used in the trained GPT models with the decided upon text inputs. This jupyter notebook is in this directory that implements a customized version of the Hugging Face transformer repo: https://github.com/huggingface/transformers. It was necessary to modify the code base in order to get out the query matrices before their dot product with the keys in the softmax operation.

  • Parse_KeyQ_Norm_Betas.ipynb - Parses and plots the KeyQuery Norm learnt Beta values.

  • Compute_Difference_In_Circle_Intersects.ipynb - Computing how the circle intersection implementations are different from those presented in the SDM book. Also comparing the Circle Intersection equation derived in the Appendix to that of the book. Finally, comparing the associated variance equation from the book with that of Jaeckel's Alterative SDM Design (presented and outlined in the paper Appendix).

  • Optimal_d.ipynb - Computing the Signal to Noise Ratio and Memory Capacity Optimal Hamming Distances.

  • Miscellaneous.ipynb - the name says it all. Different experiments and functions not used in the paper.

Python Scripts:

Supporting functions for the Jupyter Notebooks.

  • SDM_Circ_Inter_Funcs.py - Contains lots of heavily used functions including implementing the circle intersection function and fitting the log linear regression to the circle intersection.

  • Implementations_Associative_Memory.py - Handles the algorithmic implementations of all Associative Memory models considered.

  • utils_LearningProjections.py - Called by LearnProjections.ipynb, leverages functions from Implementations_Associative_Memory.py but wraps them in Pytorch backpropagation to learn the projection matrix.

  • Data_Processing_Associative_Memory.py - Applies random perturbations to continuous and binary data inputs to then evaluate the autoassociative convergence properties of various algorithms.

Folders:

  • figures/ - contains all of the figures used in the paper and additional ones. Aside from those generated by HugFace/Transformer_Empirical_Analysis.ipynb that are located in the next bullet point:

  • HugFace/GPT2Outputs/ - contains all of the GPT2 Transformer analysis figures. Generated by HugFace/Transformer_Empirical_Analysis.ipynb.

  • trained_weights/ - trained weights of the projection matrix for each dataset, Hamming radius and random initalization.

Data:

  • KeyQuery_Norm_Learnt_Betas.txt - Learnt Beta values from the Trained Transformer models of the paper: A. Henry, Prudhvi Raj Dachapally, S. Pawar, and Yuxuan Chen. Query-key normalization for transformers. In EMNLP, 2020.

  • HugFace/text_inputs.txt - line separated text inputs put into GPT2 to infer it's effective Betas. This text is used by HugFace/Transformer_Empirical_Analysis.ipynb.

Dependencies

Tested with Python 3.7.5 (should work with Python 3.5 and higher).

To run HugFace/Transformer_Empirical_Analysis.ipynb you will need to install Pytorch 1.5.1 (using CUDA or not depending on if you have a GPU) https://pytorch.org/get-started/locally/

If using Pip out of the box cd to this directory then use: pip3 install -r SDM/requirements.txt

If using Conda then ensure pip is installed with conda and then run the same above code.

Do not install (or uninstall if it is already installed) HuggingFace/transformers. As you will need to run the customized version implemented in the HugFace/ directory. cd to this directory then run: pip install -e . In trying to run this there may be a couple additional random dependencies it expects like tdqm but these are straightforward to install when and if prompted.

Acknowledgements:

Thanks to the open source community, friends and advisors for making this research possible. This includes but is not limited to:

Dr. Gabriel Kreiman, Alex Cuozzo, Miles Turpin, Dr. Pentti Kanerva, Joe Choo-Choy, Dr. Beren Millidge, Jacob Zavatone-Veth, Blake Bordelon, Nathan Rollins, Alan Amin, Max Farrens, David Rein, Sam Eure, Grace Bricken, and Davis Brown for providing invaluable inspiration, discussions and feedback. Special thanks to Miles Turpin for help working with the Transformer model experiments. We would also like to thank the open source software contributors that helped make this research possible, including but not limited to: Numpy, Pandas, Scipy, Matplotlib, PyTorch, HuggingFace, and Anaconda.

Codebase Author:

License:

This project is licensed under the MIT License - see the LICENSE.md file for details

Owner
Trenton Bricken
PhD student in Systems, Synthetic and Quantitative Biology @harvard.
Trenton Bricken
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
A convolutional recurrent neural network for classifying A/B phases in EEG signals recorded for sleep analysis.

CAP-Classification-CRNN A deep learning model based on Inception modules paired with gated recurrent units (GRU) for the classification of CAP phases

Apurva R. Umredkar 2 Nov 25, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
Software & Hardware to do multi color printing with Sharpies

3D Print Colorizer is a combination of 3D printed parts and a Cura plugin which allows anyone with an Ender 3 like 3D printer to produce multi colored

343 Jan 06, 2023
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
A PyTorch implementation of "Signed Graph Convolutional Network" (ICDM 2018).

SGCN ⠀ A PyTorch implementation of Signed Graph Convolutional Network (ICDM 2018). Abstract Due to the fact much of today's data can be represented as

Benedek Rozemberczki 251 Nov 30, 2022