SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

Related tags

Deep LearningSCALoss
Overview

SCALoss

PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022).

Introduction

corner_center_comp

  • IoU-based loss has the gradient vanish problem in the case of low overlapping bounding boxes with slow convergence speed.
  • Side Overlap can put more penalty for low overlapping bounding box cases and Corner Distance can speed up the convergence.
  • SCALoss, which combines Side Overlap and Corner Distance, can serve as a comprehensive similarity measure, leading to better localization performance and faster convergence speed.

Prerequisites

Install

Conda is not necessary for the installation. Nevertheless, the installation process here is described using it.

$ conda create -n sca-yolo python=3.8 -y
$ conda activate sca-yolo
$ git clone https://github.com/Turoad/SCALoss
$ cd SCALoss
$ pip install -r requirements.txt

Getting started

Train a model:

python train.py --data [dataset config] --cfg [model config] --weights [path of pretrain weights] --batch-size [batch size num]

For example, to train yolov3-tiny on COCO dataset from scratch with batch size=128.

python train.py --data coco.yaml --cfg yolov3-tiny.yaml --weights '' --batch-size 128

For multi-gpu training, it is recommended to use:

python -m torch.distributed.launch --nproc_per_node 4 train.py --img 640 --batch 32 --epochs 300 --data coco.yaml --weights '' --cfg yolov3.yaml --device 0,1,2,3

Test a model:

python val.py --data coco.yaml --weights runs/train/exp15/weights/last.pt --img 640 --iou-thres=0.65

Results and Checkpoints

YOLOv3-tiny

Model mAP
0.5:0.95
AP
0.5
AP
0.65
AP
0.75
AP
0.8
AP
0.9
IoU 18.8 36.2 27.2 17.3 11.6 1.9
GIoU
relative improv.(%)
18.8
0%
36.2
0%
27.1
-0.37%
17.6
1.73%
11.8
1.72%
2.1
10.53%
DIoU
relative improv.(%)
18.8
0%
36.4
0.55%
26.9
-1.1%
17.2
-0.58%
11.8
1.72%
1.9
0%
CIoU
relative improv.(%)
18.9
0.53%
36.6
1.1%
27.3
0.37%
17.2
-0.58%
11.6
0%
2.1
10.53%
SCA
relative improv.(%)
19.9
5.85%
36.6
1.1%
28.3
4.04%
19.1
10.4%
13.3
14.66%
2.7
42.11%

The convergence curves of different losses on YOLOV3-tiny: converge curve

YOLOv3

Model mAP
0.5:0.95
AP
0.5
AP
0.65
AP
0.75
AP
0.8
AP
0.9
IoU 44.8 64.2 57.5 48.8 41.8 20.7
GIoU
relative improv.(%)
44.7
-0.22%
64.4
0.31%
57.5
0%
48.5
-0.61%
42
0.48%
20.4
-1.45%
DIoU
relative improv.(%)
44.7
-0.22%
64.3
0.16%
57.5
0%
48.9
0.2%
42.1
0.72%
19.8
-4.35%
CIoU
relative improv.(%)
44.7
-0.22%
64.3
0.16%
57.5
0%
48.9
0.2%
41.7
-0.24%
19.8
-4.35%
SCA
relative improv.(%)
45.3
1.12%
64.1
-0.16%
57.9
0.7%
49.9
2.25%
43.3
3.59%
21.4
3.38%

YOLOV5s

comming soon

Citation

If our paper and code are beneficial to your work, please consider citing:

@inproceedings{zheng2022scaloss,
  title={SCALoss: Side and Corner Aligned Loss for Bounding Box Regression},
  author={Zheng, Tu and Zhao, Shuai and Liu, Yang and Liu, Zili and Cai, Deng},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2022}
}

Acknowledgement

The code is modified from ultralytics/yolov3.

You might also like...
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Official PyTorch implementation of
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

Repository for
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Owner
TuZheng
TuZheng
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
Differentiable Annealed Importance Sampling (DAIS)

Differentiable Annealed Importance Sampling (DAIS) This repository contains the code to reproduce the DAIS results from the paper Differentiable Annea

Guodong Zhang 6 Dec 26, 2021
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022