CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

Overview

CMUA-Watermark

The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is based on disrupting-deepfakes .

Contact us with [email protected], [email protected].

We will release our code soon (no later than December 31, 2021).

Introduction

CMUA-Watermark is a cross-model universal adversarial watermark that can combat multiple deepfake models while protecting a myriad of facial images. With the proposed perturbation fusion strategies and automatic step size tuning, CMUA-Watermark achieves excellent protection capabilities for facial images against four face modification models (StarGAN, AttGAN, AGGAN, HiSD).

Figure 1. Illustration of our CMUA-Watermark. Once the CMUA-watermark has been generated, we can add it directly to any facial image to generate a protected image that is visually identical to the original image but can distort outputs of deepfake models.

Figure 2. The quantitative results of CMUA-Watermark.

Usage

Installation

  1. Prepare the Environment

  2. Prepare the Datasets

    • download the CelebA datasets:
      cd stargan
      bash download.sh celeba
      
      make sure your floder (e.g. celeba_data) has img_align_celeba and list_attr_celeba.txt.
    • create the link
      ln -s your_path_to_celeba_data ./data
      
  3. Prepare the Model Weights

    For your convenient usage, we prepare the weights download link in PKU disk: https://disk.pku.edu.cn:443/link/D04A3ED9D22694D81924109D0E4EACA8.

    You can first download the weights. Then move the weight files to different floders of different models:

    cd CMUA-Watermark
    # make sure **weights** in this path.
    # If the paths bellow are not exist, please create the path (e.g., mkdir -p ./stargan/stargan_celeba_256/models).
    mv ./weights/stargan/* ./stargan/stargan_celeba_256/models
    mv ./weights/AttentionGAN/* ./AttentionGAN/AttentionGAN_v1_multi/checkpoints/celeba_256_pretrained
    mv ./weights/HiSD/* ./HiSD
    mv ./weights/AttGAN/* ./AttGAN/output/256_shortcut1_inject0_none/checkpoint

    ATTENTION! The copyright of these weight files belongs to their owners. You needs authorization for commerce, please contact to their owners!

  4. Prepare the CMUA-Watermark (only for inference)

    We prepare a CMUA-Watermark for you to test its performance: https://disk.pku.edu.cn:443/link/4FDBB772471746EC0DC397B520005D3E.

Inference

# inference in CelebA datasets with 20 images (you can change the test number in evaluate.py)
python3 universal_attack_inference.py

# inference with your own image (one image)
python3 universal_attack_inference_one_image.py ./demo_input.png # you can change the path with your own image

Training (attacking multiple deepfake models)

STEP 1 Search Step Size with TPE ( powered by Microsoft NNI )

If your want to try your onw idea, you may need to modify the nni_config.yaml and search_space.json. These two files are the configs of NNI-based search. Thanks to the NNI, you can obtain the visualized results in your browser.

nnictl create --config ./nni_config.yaml 

STEP 2 Using the Step Sizes to train your onw CMUA-Watermark!

Once you get the best step sizes, you need to modify the default step sizes in setting.json. It must be easy for a smart person like you~

After that,

python universal_attack.py

Citation

If you use our code / perturbation, please consider to cite our paper: CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes.

@misc{huang2021cmuawatermark,
      title={CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes}, 
      author={Hao Huang and Yongtao Wang and Zhaoyu Chen and Yuze Zhang and Yuheng Li and Zhi Tang and Wei Chu and Jingdong Chen and Weisi Lin and Kai-Kuang Ma},
      year={2021},
      eprint={2105.10872},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

The project is only free for academic research purposes, but needs authorization for commerce. For commerce permission, please contact [email protected].

Thanks

We use code from StarGAN, GANimation, pix2pixHD, CycleGAN, advertorch, disrupting-deepfakes and nni. These are all great repositories and we encourage you to check them out and cite them in your work.

Owner
Visual Data Interpreting and Generation Lab
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
Pytorch implementation for RelTransformer

RelTransformer Our Architecture This is a Pytorch implementation for RelTransformer The implementation for Evaluating on VG200 can be found here Requi

Vision CAIR Research Group, KAUST 21 Nov 22, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 25, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Dec 27, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021