Pytorch library for end-to-end transformer models training and serving

Overview

Russian GPT-2

Google colab notebook for finetuning.

https://colab.research.google.com/drive/1jwFks82BLyy8x3oxyKpiNdlL1PfKSQwW?usp=sharing

Google colab notebook for generating text corpus.

https://colab.research.google.com/drive/1Hsp2508TXMR0ihYOLjKYOzWm9byqg9ue

1. I just want to play with your models

You can try writing with the model here https://porfirevich.ru and with Telegram chat bot @PorfBot

You can try poetry with Telegram chat bot @NeuroPoetBot

2. What are results?

Your perplexity will be different, depending on the tokenizer, the vocab and the dataset. The better your tokenizer the worse your perplexity, actually.

Values in the table are perplexity on the validation set.

Huge dataset

GPT-2 Small, 124M. BS 64 Medium, 355M. BS 32
Unfreeze 0, LR 24e-4 80 epoch, 85-90 80 epoch, 81-85
Unfreeze 0, LR 3e-4 80 epoch, 75-76 100 epoch, 64-65
Unfreeze 0, LR 6e-5 80 epoch, 73-73.5 40 epoch, 63-63.5
Unfreeze 1, LR 3e-4 118 epoch, 51-52 142 epoch, 42.3-43.7
Unfreeze 1, LR 6e-5 80 epoch, 49-49.5 40 epoch, 41.-41.6
Unfreeze 2, LR 3e-4 70 epoch, 45.5 68 epoch, 37.2-38.6
Unfreeze 2, LR 6e-5 200 epoch, 41.18-42.19 87 epoch, 35.4-35.9
Unfreeze 7, LR 3e-4 90 epoch, 35.3 - 35.9 163 epoch, 28.6-29.6
Unfreeze 7, LR 6e-5 88 epoch, 32.6-33. 90 epoch, 27.2-27.5
Unfreeze -1 (all), LR 6e-5 160 epoch, 30.5-30.9 163 epoch, 23.8-24.15

Classics dataset. It's only 500Mb and GPT-2 overfits it pretty fast.

GPT-2 Small, 124M Medium, 355M
Unfreeze -1 (all) 28 epoch, 26.22 7 epoch, 20.9722

Poetry dataset

GPT-2 Small, 124M Medium, 355M
Unfreeze -1 (all) 25 epoch, 26.22 7 epoch, 48.36

Pelevin dataset

GPT-2 Small, 124M Medium, 355M
Unfreeze -1 (all) 5 epoch, 44.55 3 epoch, 33.38

I've trained the model using gradual unfreezing with '--unfreeze_level' parameter. The sequence was 0,1,2,7,-1 (as in the table with results). When loss don't improve for a day I switch to next value (like from 2 to 7). You can find my exact scripts in tpu/schedule_small.txt and tpu/schedule_medium.txt.

3. I'd like to download your models

The model that isn't fine-tuned on any author is here

pip install awscli
aws s3 sync --no-sign-request s3://models.dobro.ai/gpt2/ru/unfreeze_all gpt2

Folders with s_ prefix contain Small (124M) model, m_ - for Medium (355M) model.

To understand how to generate text you should start by looking at rest.py.

Also, you can download all fine-tuned models.

aws s3 sync --no-sign-request s3://models.dobro.ai/gpt2/ru all

The one with which you can play on the site is located in the Pelevin folder.

4. I've got a small Russian dataset and I want to finetune your model on it

Download the models (intructions above), choose the model and put it in your output folder. Use validation set and be careful with overfitting. On small dataset it will overfit very fast - 3-7 epoch. Follow instructions below, except you don't need to train you tokenization dictionary, because you already have one.

5. I've got a big dataset on my lang and I want to train GPT-2 on it

I'd suggest that if you don't have a bunch of GPU's you should consider renting a Google TPU. On my Nvidia Titan RTX an epoch takes 70 minutes and the same epoch takes 12.5 minutes on TPU v3-8. I've used fp16 on GPU, but I can't use bfloat16 on TPU, because it's training poorly on bfloat16 at the moment (it could have been 8 minutes if implemented properly).

You can ask for access to Google's TensorFlow Research Cloud and use TPUs for free for one month.

In the process, I've switched tokenization library from SentencePiece to YTTM. YTTM is better (10% smaller files) and much faster. If you for some reason want to use SentencePiece then the code is here, just change the tokenizer in the command line.

First, the GPT-2 model will learn Russian on a huge dataset (230 GB), and then it will learn good Russian on the Russian classical literature (500 MB). I use progressive layer unfreezing to use transfer training. Validation set is the correspondence between Leo Tolstoy with young Mahatma Gandhi.

5.1. Download a fb2 library

Main link

For finetuning first second Dostoyevskiy Tolstoy Pushkin Bulgakov Gogol Pelevin

5.2. Install dependencies

sudo xargs -a apt.txt apt install
conda env create -f environment.yml

5.3. Build and Install SentencePiece (skip if use YTTM)

Follow instructions here https://github.com/google/sentencepiece

5.4. Prepare the dataset files

Use corpus/corpus.ipynb on your dataset.

Or in google colab: https://colab.research.google.com/drive/1Hsp2508TXMR0ihYOLjKYOzWm9byqg9ue

5.5. Create vocabulary for the YTTM (and SentencePiece) tokenizer

You can skip this step if you want only to finetune the model with the existing vocab.

yttm bpe --data ./corpus/tmp/russian_corpus_for_vocab.txt --model bpe/yt.model --vocab_size 50257 --coverage 0.9999

# SentencePiece
spm_train --input=./corpus/tmp/russian_corpus_for_vocab.txt --model_prefix=bpe/m50 --vocab_size=50257 --user_defined_symbols='<|n|>'

5.6. If you want to use Google TPU, go here https://github.com/mgrankin/ru_transformers/tree/master/tpu

5.7. Install fp16 support

Mixed precision training with opt_level O2 gives the exact same loss but much faster and with less memory. The downside - APEX with O2 doesnt work with DataParallel yet, see https://github.com/NVIDIA/apex/issues/227

5.7.1 Make sure to install proper bare metal cuda.

wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run -O cuda.run
chmod +x cuda.run
sudo ./cuda.run

5.7.2 Apex

export CUDA_HOME=/usr/local/cuda-10.2
git clone https://github.com/NVIDIA/apex
cd apex
# fix setup.py if complains for version mismatch
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

5.8. Train your model!

cd ru_transformers
conda activate gpt
export TRAIN_FILE=./data/classic

# GPT-2 124M, final perplexity ?

export CUDA_VISIBLE_DEVICES=1
export MODEL_SIZE=gpt2
export OUTPUT=output_yt/s
export BS=8
export LR=5e-5

# GPT-2 355M, final perplexity 18.99?

export CUDA_VISIBLE_DEVICES=2
export MODEL_SIZE=gpt2-medium
export OUTPUT=output_yt/m
export BS=3
export LR=3e-5

# GPT-2 774M, final perplexity 21.09?

export CUDA_VISIBLE_DEVICES=3
export MODEL_SIZE=gpt2-large
export OUTPUT=output_yt/l
export BS=1
export LR=1e-5

# training script

# You shouldn't use --model_name_or_path=$MODEL_SIZE if you want to start with pre-trained Russian GPT-2. If you set --model_name_or_path=gpt2 you'll start with English GPT-2. For Russian GPT-2 you should download the model, put it in the output dir and use --model_name_or_path=$OUTPUT.
# This step will download an English GPT-2 to the $OUTPUT and start training it.
# If you want to start from Russian GPT-2 then skip this step. Instead download the Russian GPT-2, put it to $OUTPUT manually. 
python run_lm_finetuning.py \
    --output_dir=$OUTPUT \
    --model_type=gpt2 \
    --model_name_or_path=$MODEL_SIZE \
    --do_train \
    --train_data_file=$TRAIN_FILE \
    --per_gpu_train_batch_size $BS \
    --save_steps=10000 \
    --logging_steps=1 \
    --fp16 \
    --fp16_opt_level O2 \
    --warmup_samples 16000 \
    --learning_rate $LR \
    --tokenizer_class YTEncoder \
    --tokenizer_name bpe/yt.model \
    --do_eval \
    --evaluate_during_training \
    --eval_steps 1000 \
    --eval_data_file=./data/classic/valid \
    --unfreeze_level 0

# My dataset is 230Gb and it doesn't fit in RAM, so each epoch is a random sample from it. That is why the loop.
while true
do
    python run_lm_finetuning.py \
        --output_dir=$OUTPUT \
        --model_type=gpt2 \
        --model_name_or_path=$OUTPUT \
        --do_train \
        --train_data_file=$TRAIN_FILE \
        --per_gpu_train_batch_size $BS \
        --save_steps=10000 \
        --logging_steps=10 \
        --fp16 \
        --fp16_opt_level O2 \
        --warmup_samples 16000 \
        --learning_rate $LR \
        --overwrite_output_dir \
        --tokenizer_class YTEncoder \
        --tokenizer_name bpe/yt.model \
        --do_eval \
        --evaluate_during_training \
        --eval_steps 1000 \
        --eval_data_file=./data/classic/valid \
        --save_total_limit 30 \
        --num_train_epochs 10.0 \
        --unfreeze_level 0

    sleep 1
done


# with decay
python run_lm_finetuning.py \
    --output_dir=$OUTPUT \
    --model_type=gpt2 \
    --model_name_or_path=$OUTPUT \
    --do_train \
    --train_data_file=$TRAIN_FILE \
    --per_gpu_train_batch_size $BS \
    --save_steps=10000 \
    --logging_steps=10 \
    --fp16 \
    --fp16_opt_level O2 \
    --warmup_samples 16000 \
    --learning_rate $LR \
    --overwrite_output_dir \
    --tokenizer_class YTEncoder \
    --tokenizer_name bpe/yt.model \
    --do_eval \
    --evaluate_during_training \
    --eval_steps 1000 \
    --eval_data_file=./data/classic/valid \
    --save_total_limit 30 \
    --num_train_epochs 3.0 \
    --unfreeze_level 0 \
    --lr_decay

# and then repeat with unfreeze_level 1,2,3...

5.9. Save trained model

aws s3 cp output_s/config.json s3://models.dobro.ai/gpt2/ru/small/
aws s3 cp output_s/encoder.model s3://models.dobro.ai/gpt2/ru/small/
aws s3 cp output_s/pytorch_model.bin s3://models.dobro.ai/gpt2/ru/small/

5.10. Deploy the model

git clone https://github.com/mgrankin/ru_transformers.git
cd ru_transformers
mkdir logs
aws s3 sync --no-sign-request s3://models.dobro.ai/gpt2/ru gpt2
cp -R gpt2/pelevin/m_checkpoint-3365357 gpt2/medium
cp -R gpt2/poetry/m_checkpoint-3397989 gpt2/medium/poetry
conda env create -f environment.yml
conda activate gpt
uvicorn rest:app --reload --host 0.0.0.0
# crontab  DEVICE="cuda:1"
# @reboot /bin/bash -c "cd ru_transformers; git pull; source ~/.bashrc; conda activate gpt; DEVICE="cuda:1" uvicorn rest:app --reload --host 0.0.0.0"

6. Additional scripts

evaluate_model.py - to evaluate your model using input file or prompt.

text_processing.py - to process your dataset.

to_token_convertor.py - to convert your string to tokens. In case if you curious.

Owner
Mikhail Grankin
Mikhail Grankin
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Python utility to generate filesystem content for Obsidian.

Security Vault Generator Quickly parse, format, and output common frameworks/content for Obsidian.md. There is a strong focus on MITRE ATT&CK because

Justin Angel 73 Dec 02, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022