Pytorch library for end-to-end transformer models training and serving

Overview

Russian GPT-2

Google colab notebook for finetuning.

https://colab.research.google.com/drive/1jwFks82BLyy8x3oxyKpiNdlL1PfKSQwW?usp=sharing

Google colab notebook for generating text corpus.

https://colab.research.google.com/drive/1Hsp2508TXMR0ihYOLjKYOzWm9byqg9ue

1. I just want to play with your models

You can try writing with the model here https://porfirevich.ru and with Telegram chat bot @PorfBot

You can try poetry with Telegram chat bot @NeuroPoetBot

2. What are results?

Your perplexity will be different, depending on the tokenizer, the vocab and the dataset. The better your tokenizer the worse your perplexity, actually.

Values in the table are perplexity on the validation set.

Huge dataset

GPT-2 Small, 124M. BS 64 Medium, 355M. BS 32
Unfreeze 0, LR 24e-4 80 epoch, 85-90 80 epoch, 81-85
Unfreeze 0, LR 3e-4 80 epoch, 75-76 100 epoch, 64-65
Unfreeze 0, LR 6e-5 80 epoch, 73-73.5 40 epoch, 63-63.5
Unfreeze 1, LR 3e-4 118 epoch, 51-52 142 epoch, 42.3-43.7
Unfreeze 1, LR 6e-5 80 epoch, 49-49.5 40 epoch, 41.-41.6
Unfreeze 2, LR 3e-4 70 epoch, 45.5 68 epoch, 37.2-38.6
Unfreeze 2, LR 6e-5 200 epoch, 41.18-42.19 87 epoch, 35.4-35.9
Unfreeze 7, LR 3e-4 90 epoch, 35.3 - 35.9 163 epoch, 28.6-29.6
Unfreeze 7, LR 6e-5 88 epoch, 32.6-33. 90 epoch, 27.2-27.5
Unfreeze -1 (all), LR 6e-5 160 epoch, 30.5-30.9 163 epoch, 23.8-24.15

Classics dataset. It's only 500Mb and GPT-2 overfits it pretty fast.

GPT-2 Small, 124M Medium, 355M
Unfreeze -1 (all) 28 epoch, 26.22 7 epoch, 20.9722

Poetry dataset

GPT-2 Small, 124M Medium, 355M
Unfreeze -1 (all) 25 epoch, 26.22 7 epoch, 48.36

Pelevin dataset

GPT-2 Small, 124M Medium, 355M
Unfreeze -1 (all) 5 epoch, 44.55 3 epoch, 33.38

I've trained the model using gradual unfreezing with '--unfreeze_level' parameter. The sequence was 0,1,2,7,-1 (as in the table with results). When loss don't improve for a day I switch to next value (like from 2 to 7). You can find my exact scripts in tpu/schedule_small.txt and tpu/schedule_medium.txt.

3. I'd like to download your models

The model that isn't fine-tuned on any author is here

pip install awscli
aws s3 sync --no-sign-request s3://models.dobro.ai/gpt2/ru/unfreeze_all gpt2

Folders with s_ prefix contain Small (124M) model, m_ - for Medium (355M) model.

To understand how to generate text you should start by looking at rest.py.

Also, you can download all fine-tuned models.

aws s3 sync --no-sign-request s3://models.dobro.ai/gpt2/ru all

The one with which you can play on the site is located in the Pelevin folder.

4. I've got a small Russian dataset and I want to finetune your model on it

Download the models (intructions above), choose the model and put it in your output folder. Use validation set and be careful with overfitting. On small dataset it will overfit very fast - 3-7 epoch. Follow instructions below, except you don't need to train you tokenization dictionary, because you already have one.

5. I've got a big dataset on my lang and I want to train GPT-2 on it

I'd suggest that if you don't have a bunch of GPU's you should consider renting a Google TPU. On my Nvidia Titan RTX an epoch takes 70 minutes and the same epoch takes 12.5 minutes on TPU v3-8. I've used fp16 on GPU, but I can't use bfloat16 on TPU, because it's training poorly on bfloat16 at the moment (it could have been 8 minutes if implemented properly).

You can ask for access to Google's TensorFlow Research Cloud and use TPUs for free for one month.

In the process, I've switched tokenization library from SentencePiece to YTTM. YTTM is better (10% smaller files) and much faster. If you for some reason want to use SentencePiece then the code is here, just change the tokenizer in the command line.

First, the GPT-2 model will learn Russian on a huge dataset (230 GB), and then it will learn good Russian on the Russian classical literature (500 MB). I use progressive layer unfreezing to use transfer training. Validation set is the correspondence between Leo Tolstoy with young Mahatma Gandhi.

5.1. Download a fb2 library

Main link

For finetuning first second Dostoyevskiy Tolstoy Pushkin Bulgakov Gogol Pelevin

5.2. Install dependencies

sudo xargs -a apt.txt apt install
conda env create -f environment.yml

5.3. Build and Install SentencePiece (skip if use YTTM)

Follow instructions here https://github.com/google/sentencepiece

5.4. Prepare the dataset files

Use corpus/corpus.ipynb on your dataset.

Or in google colab: https://colab.research.google.com/drive/1Hsp2508TXMR0ihYOLjKYOzWm9byqg9ue

5.5. Create vocabulary for the YTTM (and SentencePiece) tokenizer

You can skip this step if you want only to finetune the model with the existing vocab.

yttm bpe --data ./corpus/tmp/russian_corpus_for_vocab.txt --model bpe/yt.model --vocab_size 50257 --coverage 0.9999

# SentencePiece
spm_train --input=./corpus/tmp/russian_corpus_for_vocab.txt --model_prefix=bpe/m50 --vocab_size=50257 --user_defined_symbols='<|n|>'

5.6. If you want to use Google TPU, go here https://github.com/mgrankin/ru_transformers/tree/master/tpu

5.7. Install fp16 support

Mixed precision training with opt_level O2 gives the exact same loss but much faster and with less memory. The downside - APEX with O2 doesnt work with DataParallel yet, see https://github.com/NVIDIA/apex/issues/227

5.7.1 Make sure to install proper bare metal cuda.

wget http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run -O cuda.run
chmod +x cuda.run
sudo ./cuda.run

5.7.2 Apex

export CUDA_HOME=/usr/local/cuda-10.2
git clone https://github.com/NVIDIA/apex
cd apex
# fix setup.py if complains for version mismatch
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

5.8. Train your model!

cd ru_transformers
conda activate gpt
export TRAIN_FILE=./data/classic

# GPT-2 124M, final perplexity ?

export CUDA_VISIBLE_DEVICES=1
export MODEL_SIZE=gpt2
export OUTPUT=output_yt/s
export BS=8
export LR=5e-5

# GPT-2 355M, final perplexity 18.99?

export CUDA_VISIBLE_DEVICES=2
export MODEL_SIZE=gpt2-medium
export OUTPUT=output_yt/m
export BS=3
export LR=3e-5

# GPT-2 774M, final perplexity 21.09?

export CUDA_VISIBLE_DEVICES=3
export MODEL_SIZE=gpt2-large
export OUTPUT=output_yt/l
export BS=1
export LR=1e-5

# training script

# You shouldn't use --model_name_or_path=$MODEL_SIZE if you want to start with pre-trained Russian GPT-2. If you set --model_name_or_path=gpt2 you'll start with English GPT-2. For Russian GPT-2 you should download the model, put it in the output dir and use --model_name_or_path=$OUTPUT.
# This step will download an English GPT-2 to the $OUTPUT and start training it.
# If you want to start from Russian GPT-2 then skip this step. Instead download the Russian GPT-2, put it to $OUTPUT manually. 
python run_lm_finetuning.py \
    --output_dir=$OUTPUT \
    --model_type=gpt2 \
    --model_name_or_path=$MODEL_SIZE \
    --do_train \
    --train_data_file=$TRAIN_FILE \
    --per_gpu_train_batch_size $BS \
    --save_steps=10000 \
    --logging_steps=1 \
    --fp16 \
    --fp16_opt_level O2 \
    --warmup_samples 16000 \
    --learning_rate $LR \
    --tokenizer_class YTEncoder \
    --tokenizer_name bpe/yt.model \
    --do_eval \
    --evaluate_during_training \
    --eval_steps 1000 \
    --eval_data_file=./data/classic/valid \
    --unfreeze_level 0

# My dataset is 230Gb and it doesn't fit in RAM, so each epoch is a random sample from it. That is why the loop.
while true
do
    python run_lm_finetuning.py \
        --output_dir=$OUTPUT \
        --model_type=gpt2 \
        --model_name_or_path=$OUTPUT \
        --do_train \
        --train_data_file=$TRAIN_FILE \
        --per_gpu_train_batch_size $BS \
        --save_steps=10000 \
        --logging_steps=10 \
        --fp16 \
        --fp16_opt_level O2 \
        --warmup_samples 16000 \
        --learning_rate $LR \
        --overwrite_output_dir \
        --tokenizer_class YTEncoder \
        --tokenizer_name bpe/yt.model \
        --do_eval \
        --evaluate_during_training \
        --eval_steps 1000 \
        --eval_data_file=./data/classic/valid \
        --save_total_limit 30 \
        --num_train_epochs 10.0 \
        --unfreeze_level 0

    sleep 1
done


# with decay
python run_lm_finetuning.py \
    --output_dir=$OUTPUT \
    --model_type=gpt2 \
    --model_name_or_path=$OUTPUT \
    --do_train \
    --train_data_file=$TRAIN_FILE \
    --per_gpu_train_batch_size $BS \
    --save_steps=10000 \
    --logging_steps=10 \
    --fp16 \
    --fp16_opt_level O2 \
    --warmup_samples 16000 \
    --learning_rate $LR \
    --overwrite_output_dir \
    --tokenizer_class YTEncoder \
    --tokenizer_name bpe/yt.model \
    --do_eval \
    --evaluate_during_training \
    --eval_steps 1000 \
    --eval_data_file=./data/classic/valid \
    --save_total_limit 30 \
    --num_train_epochs 3.0 \
    --unfreeze_level 0 \
    --lr_decay

# and then repeat with unfreeze_level 1,2,3...

5.9. Save trained model

aws s3 cp output_s/config.json s3://models.dobro.ai/gpt2/ru/small/
aws s3 cp output_s/encoder.model s3://models.dobro.ai/gpt2/ru/small/
aws s3 cp output_s/pytorch_model.bin s3://models.dobro.ai/gpt2/ru/small/

5.10. Deploy the model

git clone https://github.com/mgrankin/ru_transformers.git
cd ru_transformers
mkdir logs
aws s3 sync --no-sign-request s3://models.dobro.ai/gpt2/ru gpt2
cp -R gpt2/pelevin/m_checkpoint-3365357 gpt2/medium
cp -R gpt2/poetry/m_checkpoint-3397989 gpt2/medium/poetry
conda env create -f environment.yml
conda activate gpt
uvicorn rest:app --reload --host 0.0.0.0
# crontab  DEVICE="cuda:1"
# @reboot /bin/bash -c "cd ru_transformers; git pull; source ~/.bashrc; conda activate gpt; DEVICE="cuda:1" uvicorn rest:app --reload --host 0.0.0.0"

6. Additional scripts

evaluate_model.py - to evaluate your model using input file or prompt.

text_processing.py - to process your dataset.

to_token_convertor.py - to convert your string to tokens. In case if you curious.

Owner
Mikhail Grankin
Mikhail Grankin
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022