Tech Resources for Academic Communities

Overview

Tech Resources for Academic Communities

The content and the code in this repo are intended for computer science instruction as a collaboration with Microsoft developer advocates and Faculty / Students under the MIT license. Please check back regularly for updated versions.

Source: https://github.com/microsoft/AcademicContent

This repo provides technical resources to help students and faculty learn about Azure and teach others. The content covers cross-platform scenarios in AI and machine learning, data science, web development, mobile app dev, internet of things, and DevOps. It also includes interesting tech talks and engaging, fun tech challenges that Microsoft leads at student hackathons and Imagine Cup.

Important: We are migrating to Microsoft Learn | If you can't find what you're looking for in this repo, check out the labs on Microsoft Learn too. Many of these labs have their own built-in Azure sandbox making it easier for faculty and students to learn without requiring an Azure Subscription.

Students can get free Azure credits to explore these resources here:

  • Azure for Students | $100 in Azure for 12 months with free tier of services - no credit card required with academic verification
  • Azure for Students Starter | use select Azure products like App Services for free - no credit card required with academic verification
  • Azure Free Account | $200 in Azure for one month with free tier of services - requires a credit card and probably the best fit for faculty evaluating Azure for course instruction unless your organization has a grant or enterprise agreement.

Your feedback is appreciated - please fork this repo and contribute!

To report any issues, please log a GitHub issue. Include the content section, module number, and title, along with any error messages and screenshots.

Learn by doing with our hands-on labs

Check out our hands-on labs that can be used on your own or in the classroom. They also make for fun, easy-to-run workshops!

Lab Categories Description
AI and Machine Learning Build bots and apps backed by AI and ML using Azure and Azure Cognitive Services.
Azure Services Deploy serverless code with Azure Functions, run Docker containers, use Azure to build Blockchain networks and more.
Big Data and Analytics Spin up Apache Spark Clusters, Use Hadoop to extract information from big datasets or use Power BI to explore and visualize data.
Deep Learning These labs build on each other to introduce tools and libraries for AI. They're labeled 200-400 level to indicate level of technical detail.
Internet-of-Things Use Azure to collect and stream IoT data securely and in real time.
Web Development Quickly create scalable web apps using Node, PHP, MySQL on easy-to-use tools like Visual Studio Code and GitHub.
Web Development for Beginners, 24 lessons A curriculum with 24 lessons, assignments and five projects to build. Covers HTML, CSS and JavaScript. Also includes Pre- and Post- Quizzes. Made with teachers in mind, or as self paced learning
Machine Learning for Beginners, 25 lessons A curriculum with 25 lessons with assignments covering classic Machine Learning primarily using Scikit-learn. Covers Regression, Classification, Clustering, NLP, Time Series Forecasting, and Reinforcement Learning, with two Applied ML lessons. Also includes 50 Pre- and Post- Quizzes. Made with teachers in mind, or as self paced learning
IoT for Beginners, 24 lessons A curriculum with 24 lessons with assignments all about the Internet of Things. The projects cover the journey of food from farm to table. This includes farming, logistics, manufacturing, retail and consumer - all popular industry areas for IoT devices. Also includes Pre- and Post- Quizzes. Made with teachers in mind, or as self paced learning

Host great events and hacks

Want to host an event at your school? We can help with the resources below!

Resource
Events and Hacks These are keynotes and hack workshops that Microsoft has produced for student events. Feel free to use. Most slides also contain suggested demos and talk tracks. There's also pre-packaged coding challenge to help students explore machine learning.
Tech Talks One-off presentations on emerging or innovative tech topics with speakers notes and demos.

Other available academic resources

We also have other great educator content to help you use Azure in the classroom.

Resource
Scripts Scripts and templates built in PowerShell or BASH to help set up your classroom environment.
Azure Guides Discover what Azure technologies apply to different teaching areas.
Course Content Learning modules to complement existing course instruction. Includes presentations, speaker notes, and hands-on labs.

Attend our Reactor Workshops

We focus on developing high-quality content for all Cloud, Data Science, Machine Learning, and AI learners. Through workshops, tech talks, and hackathons hosted around the world, come learn and apply new skills to what you're interested in!

Resource
Reactor Workshops Content for our First Party Reactor Workshops can be found here.
Reactor Locations Find out schedules, learn more about each space, and see where we are opening a Reactor near you!

Content from other sources

Resource
Azure Architecture Center Cloud architecture guides, reference architectures, and example workloads for how to put the pieces of the cloud together
Microsoft AI School Content for students, developers and data scientists to get started and dive deep into the Microsoft AI platform and deep learning.
Microsoft Learn Hundreds of free online training by world-class experts to help you build your technical skills on the latest Microsoft technologies.
Technical Community Content Workshops from the community team.
Research case studies Case studies of faculty using Azure for Research collected by Microsoft Research. Submit your own Azure research stories here too!
Microsoft Research Data Sets Data sets shared by Microsoft Research for academic use.
Machine Learning Data Sets Data sets shared by Azure Machine Learning team to help explore machine learning.
MS MARCO Microsoft MAchine Reading COmprehension Dataset generated from real Bing user queries and search results.
IoT School Resources for learning about Azure IoT solutions, platform services and industry-leading edge technologies.
Azure IoT curriculum resources Hands on labs and content for students and educators to learn and teach the Internet of Things at schools, universities, coding clubs, community colleges and bootcamps
AI Labs Experience, learn and code the latest breakthrough AI innovations by Microsoft.
Channel9 Videos for developers from people building Microsoft products and services.

Structure of the docs part of this repository

This repository is designed to build a VuePress site that is hosted using GitHub Pages.

The content of this site lives in the docs folder. The main page is constructed from the README.md in that folder, and the side bar is made of the contents of the content folder.

Building the docs

To build these docs, you will need npm installed. Once you have this installed, install VuePress:

npm install vuepress

To build the docs, use the deploy.sh script. This script will build the docs, then push them to the gh-pages branch of a given fork of this project. You pass the GitHub user/org name to the script. This way you can test the build offline, then push to the parent as part of an automated script.

deploy.sh <org>

Contributing

We 💖 love 💖 contributions. In fact, we want students, faculty, researchers and life-long learners to contribute to this repo, either by adding links to existing content, or building content. Please read the contributing guide to learn more.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Spatiotemporal Machine Learning 45 Jul 22, 2022
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty ⒸⓄⓋⒾⒹ-①⑨ (MyFirstCTF Only) Reverse Baby ★ Piano Reverse C#, .NET ★

6 Oct 28, 2021
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022