Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Overview

Xilinx_Vitis_AI

This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board.


Prerequisites

  1. Vitis Core Development Kit 2019.2

This could be downloaded from here: Link to the websire

  1. Vitis-AI GitHub Repository v1.1

Here is the link to the repository v1.1

  1. Vitis-Ai Docker Container

The command to pull the container: docker pull xilinx/vitis-ai:1.1.56

  1. XRT 2019.2

GitHub Repo Link 2019.2

  1. Avnet Vitis Platform 2019.2

Here is the link to download the zip file Avnet Website

  1. Ubuntu OS 18.04

Once the tools have been setup, there are five (5) main steps to targeting an AI applications to Ultra96V2 Platform:

  1. Build the Hardware Design
  2. Compile Your Custom Model
  3. Build the AI Applications
  4. Create the SD Card Content
  5. Execute the AI Applications on hardware

Supposed that you have trained your model previously in one of the Tensorflow (.Pb), Caffe(.Caffemodel and .Prototxt) and Darknet(.Weights and .Cfg) Frameworks.

Build the Hardware Design

Clone Xilinx’s Vitis-AI github repository:

$ git clone --branch v1.1 https://github.com/Xilinx/Vitis-AI
$ cd Vitis-AI
$ export VITIS_AI_HOME = "$PWD"

Install the Avnet Vitis platform:>

Download this and extract to the hard drive of your linux machine. Then, specify the location of the Vitis platform, by creating the SDX_PLATFORM environment variable that specified to the location of the.xpfm file.

$ export SDX_PLATFORM=/home/Avnet/vitis/platform_repo/ULTRA96V2/ULTRA96V2.xpfm

Build the Hardware Project (SD Card Image)

I suggest you to download the Pre-Built from here

Compile the Trained Models

Remember that you should have pulled the docker container first.

Caffe Models:

$ cd $VITIS_AI_HOME
$ mkdir project
$ cp PATH/TO/TRAINED/MODELS  $VITIS_AI_HOME/project
$ ./docker_run.sh xilinx/vitis-ai:1.1.56
$ cd project
$ conda activate vitis-ai-caffe
$ vai_q_caffe quantize -model float.prototxt -weights float.caffemodel -calib_iter 5
$ vai_c_caffe -p .PROTOTXT -c .CAFFEMODEL -a ARCH.JSON -o OUTPUT_DIR -n NET_NAME 

Tensorflow Models:

$ cd $VITIS_AI_HOME
$ mkdir project
$ cp PATH/TO/TRAINED/MODELS  $VITIS_AI_HOME/project
$ ./docker_run.sh xilinx/vitis-ai:1.1.56
$ cd project
$ conda activate vitis-ai-tensorflow
$ vai_q_tensorflow quantize --input_frozen_graph FROZEN_PB --input_nodes xxx --output_nodes yyy --input_shapes zzz --input_fn module.calib_input --calib_iter 5
$ vai_c_tensorflow -f FROZEN_PB -a ARCH.JSON -o OUTPUT_DIR -n NET_NAME 

Compile the AI Application Using DNNDK APIs

The DNNDK API is the low-level API used to communicate with the AI engine (DPU). This API is the recommended API for users that will be creating their own custom neural networks.

Download and install the SDK for cross-compilation, specifying a unique and meaningful installation destination (knowing that this SDK will be specific to the Vitis-AI 1.1 DNNDK samples):

$ wget -O sdk.sh https://www.xilinx.com/bin/public/openDownload?filename=sdk.sh
$ chmod +x sdk.sh
$ ./sdk.sh -d ~/petalinux_sdk_vai_1_1_dnndk 

Setup the environment for cross-compilation:

$ unset LD_LIBRARY_PATH
$ source ~/petalinux_sdk_vai_1_1_dnndk/environment-setup-aarch64-xilinx-linux

Download and extract the DNNDK runtime examples and Install the additional DNNDK runtime content:

$ wget -O vitis-ai_v1.1_dnndk.tar.gz  https://www.xilinx.com/bin/public/openDownload?filename=vitis-ai_v1.1_dnndk.tar.gz
$ tar -xvzf vitis-ai-v1.1_dnndk.tar.gz
$ cd vitis-ai-v1.1_dnndk
$ ./install.sh $SDKTARGETSYSROOT

Copy the Compiled project:

$ cp -r ../project/ .

Download and extract the additional content (images and video files) for the DNNDK examples:

$ wget -O vitis-ai_v1.1_dnndk_sample_img.tar.gz https://www.xilinx.com/bin/public/openDownload?filename=vitis-ai_v1.1_dnndk_sample_img.tar.gz
$ tar -xvzf vitis-ai_v1.1_dnndk_sample_img.tar.gz

For the custom application (project folder), create a model directory and copy the dpu_*.elf model files you previously built:

$ cd $VITIS_AI_HOME/project
$ mkdir model_for_ultra96v2
$ cp -r model_for_ultra96v2 model
$ make

NOTE: You could also edit the build.sh script to add support for the new Platforms like Ultra96V2.

Execute the AI Application on ULTRA96V2

  1. Boot the Ultra96V2 with the pre-build sd-card image you dowloaded. For Learning How to Do This, Click HERE!
  2. $ cd /run/media/mmcblk0p1
  3. $ cp dpu.xclbin /usr/lib/.
  4. Install the Vitis-AI embedded package:
$ cd runtime/vitis-ai_v1.1_dnndk 
$ source ./install.sh
  1. Define the DISPLAY environment variable:
$ export DISPLAY=:0.0
$ xrandr --output DP-1 --mode 640x480
  1. Run the Custom Application:
 $ cd vitis_ai_dnndk_samples
 $ ./App 
Owner
Amin Mamandipoor
Currently, Studying Master of Computer Systems Architecture at the University of Tabriz.
Amin Mamandipoor
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
A Python Package for Convex Regression and Frontier Estimation

pyStoNED pyStoNED is a Python package that provides functions for estimating multivariate convex regression, convex quantile regression, convex expect

Sheng Dai 17 Jan 08, 2023
MADE (Masked Autoencoder Density Estimation) implementation in PyTorch

pytorch-made This code is an implementation of "Masked AutoEncoder for Density Estimation" by Germain et al., 2015. The core idea is that you can turn

Andrej 498 Dec 30, 2022
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
A whale detector design for the Kaggle whale-detector challenge!

CNN (InceptionV1) + STFT based Whale Detection Algorithm So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The obje

Tarin Ziyaee 92 Sep 28, 2021
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022