DFM: A Performance Baseline for Deep Feature Matching

Related tags

Deep LearningDFM
Overview

DFM: A Performance Baseline for Deep Feature Matching

Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baseline for Deep Feature Matching at CVPR 2021 Image Matching Workshop.

Paper (CVF) | Paper (arXiv)
Presentation (live) | Presentation (recording)

Overview

Setup Environment

We strongly recommend using Anaconda. Open a terminal in ./python folder, and simply run the following lines to create the environment:

conda env create -f environment.yml
conda activte dfm

Dependencies
If you do not use conda, DFM needs the following dependencies:
(Versions are not strict; however, we have tried DFM with these specific versions.)

  • python=3.7.1
  • pytorch=1.7.1
  • torchvision=0.8.2
  • cudatoolkit=11.0
  • matplotlib=3.3.4
  • pillow=8.2.0
  • opencv=3.4.2
  • ipykernel=5.3.4
  • pyyaml=5.4.1

Enjoy with DFM!

Now you are ready to test DFM by the following command:

python dfm.py --input_pairs image_pairs.txt

You should make the image_pairs.txt file as following:

1A> 1B>
2A> 2B>
.
.
.
nA> nB>

If you want to run DFM with a specific configuration, you can make changes to the following arguments in config.yml:

  • Use enable_two_stage to enable or disable two stage approach (default: True)
    (Note: Make it enable for planar scenes with significant viewpoint changes, otherwise disable.)
  • Use model to change the pre-trained model (default: VGG19)
    (Note: DFM only supports VGG19 and VGG19_BN right now, we plan to add other backbones.)
  • Use ratio_th to change ratio test thresholds (default: [0.9, 0.9, 0.9, 0.9, 0.95, 1.0])
    (Note: These ratio test thresholds are for 1st to 5th layer, the last threshold (6th) are for Stage-0 and only usable when --enable_two_stage=True)
  • Use bidirectional to enable or disable bidirectional ratio test. (default: True)
    (Note: Make it enable to find more robust matches. Naturally, it should be enabled, make it False is only for similar results with our Matlab implementation since Matlab's matchFeatures function does not execute ratio test in a bidirectional way.)
  • Use display_results to enable or disable displaying results (default: True)
    (Note: If True, DFM saves matched image pairs to output_directory.)
  • Use output_directory to define output directory. (default: 'results')
    (Note: imageA_imageB_matches.npz will be created in output_directory for each image pair.)

Evaluation

Currently, we do not have support evaluation for our Python implementation. You can use our Image Matching Evaluation repository (coming soon), in which we have support to evaluate SuperPoint, SuperGlue, Patch2Pix, and DFM algorithms on HPatches. Also, you can use our Matlab implementation (see For Matlab Users section) to reproduce the results presented in the paper.

Notice

To reproduce our results given in the paper, use our Matlab implementation.
You can get more accurate results (but with fewer features) using Python implementation. It is mainly because MATLAB’s matchFeatures function does not execute ratio test in a bidirectional way, where our Python implementation performs bidirectional ratio test. Nevertheless, we made bidirectionality adjustable in our Python implementation as well.

For Matlab Users

We have implemented and tested DFM on MATLAB R2017b.

Prerequisites

You need to install MatConvNet (we have support for matconvnet-1.0-beta24). Follow the instructions on the official website.

Once you finished the installation of MatConvNet, you should download pretratined VGG-19 network to the ./matlab/models folder.

Running DFM

Now, you are ready to try DFM!

Just open and run main_DFM.m with your own images.

Evaluation on HPatches

Download HPatches sequences and extract it to ./matlab/data folder.

Run main_hpatches.m which is in ./matlab/HPatches Evaluation folder.

A results.txt file will be generetad in ./matlab/results/HPatches folder.

  • In the first column you can find the pair names.
  • In the 2-11 column you can find the Mean Matching Accuracy (MMA) results for 1-10 pixel thresholds.
  • In 12th column you can find number of matched features.
  • Columns 13-17 are for best homography estimation results (denoted as boe in the paper)
  • Columns 18-22 are for worst homography estimation results (denoted as woe in the paper)
  • Columns 22-71 are for 10 different homography estimation tests.

BibTeX Citation

Please cite our paper if you use the code:

@InProceedings{Efe_2021_CVPR,
    author    = {Efe, Ufuk and Ince, Kutalmis Gokalp and Alatan, Aydin},
    title     = {DFM: A Performance Baseline for Deep Feature Matching},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2021},
    pages     = {4284-4293}
}
Owner
MSc student @ METU
MLPs for Vision and Langauge Modeling (Coming Soon)

MLP Architectures for Vision-and-Language Modeling: An Empirical Study MLP Architectures for Vision-and-Language Modeling: An Empirical Study (Code wi

Yixin Nie 27 May 09, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022
Tracking code for the winner of track 1 in the MMP-Tracking Challenge at ICCV 2021 Workshop.

Tracking Code for the winner of track1 in MMP-Trakcing challenge This repository contains our tracking code for the Multi-camera Multiple People Track

DamoCV 29 Nov 13, 2022
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Tianyi Pan 35 Nov 24, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Deep Learning as a Cloud API Service.

Deep API Deep Learning as Cloud APIs. This project provides pre-trained deep learning models as a cloud API service. A web interface is available as w

Wu Han 4 Jan 06, 2023
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
Dataset for the Research2Clinics @ NeurIPS 2021 Paper: What Do You See in this Patient? Behavioral Testing of Clinical NLP Models

Behavioral Testing of Clinical NLP Models This repository contains code for testing the behavior of clinical prediction models based on patient letter

Betty van Aken 2 Sep 20, 2022
This is a simple plugin for Vim that allows you to use OpenAI Codex.

🤖 Vim Codex An AI plugin that does the work for you. This is a simple plugin for Vim that will allow you to use OpenAI Codex. To use this plugin you

Tom Dörr 195 Dec 28, 2022