A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

Related tags

Deep Learninguninas
Overview

UniNAS

A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

under development

(which happens mostly on our internal GitLab, we push only every once in a while to Github)

  • APIs may change
  • argparse arguments may be moved to more fitting classes
  • there may be incomplete or not-yet-working pieces of code
  • ...

Features

  • modular and therefore reusable
    • data set loading,
    • network building code and topologies,
    • methods to train architecture weights,
    • sets of operations (primitives),
    • weight initializers,
    • metrics,
    • ... and more
  • everything is configurable from the command line and/or config files
    • improved reproducibility, since detailed run configurations are saved and logged
    • powerful search network descriptions enable e.g. highly customizable weight sharing settings
    • the underlying argparse mechanism enables using a GUI for configurations
  • compare results of different methods in the same environment
  • import and export detailed network descriptions
  • integrate new methods and more with fairly little effort
  • NAS-Benchmark integration
    • NAS-Bench 201
  • ... and more

Where is this code from?

Except for a few pieces, the code is entirely self-written. However, sometimes the (official) code is useful to learn from or clear up some details, and other frameworks can be used for their nice features.

Other meta-NAS frameworks

  • Deep Architect
    • highly customizable search spaces, hyperparameters, ...
    • the searchers (SMBO, MCTS, ...) focus on fully training (many) models and are not differentiable
  • D-X-Y NAS-Projects
  • Auto-PyTorch
    • stronger focus on model selection than optimizing one architecture
  • Vega
  • NNI

Repository notes

Dynamic argparse tree

Everything is an argument. Learning rate? Argument. Scheduler? Argument. The exact topology of a Network, including how many of each cell and whether they share their architecture weights? Also arguments.

This is enabled by the idea that each used class (method, network, cells, regularizers, ...) can add arguments to argparse, including which further classes are required (e.g. a method needs a network, which needs a stem).

It starts with the Main class adding a Task (cls_task), which itself adds all required components (cls_*).

To see all available (meta) arguments, run Main.list_all_arguments() in uninas/main.py

Graphical user interface

Since putting together the arguments correctly is not trivial (and requires some familiarity with the code base), an easier approach is using a GUI.

Have a look at uninas/gui/tk_gui/main.py, a tkinter GUI frontend.

The GUI can automatically filter usable classes, display available arguments, and display tooltips; based only on the implemented argparse (meta) arguments in the respective classes.

Some meta arguments take a single class name:

e.g: cls_task, cls_trainer, cls_data, cls_criterion, cls_method

The chosen classes define their own arguments, e.g.:

  • cls_trainer="SimpleTrainer"
  • SimpleTrainer.max_epochs=100
  • SimpleTrainer.test_last=10

Their names are also available as wildcards, automatically using their respectively set class name:

  • cls_trainer="SimpleTrainer"
  • {cls_trainer}.max_epochs --> SimpleTrainer.max_epochs
  • {cls_trainer}.test_last --> SimpleTrainer.test_last

Some meta arguments take a comma-separated list of class names:

e.g. cls_metrics, cls_initializers, cls_regularizers, cls_optimizers, cls_schedulers

The chosen classes also define their own arguments, but always include an index, e.g.:

  • cls_regularizers="DropOutRegularizer, DropPathRegularizer"
  • DropOutRegularizer#0.prob=0.5
  • DropPathRegularizer#1.max_prob=0.3
  • DropPathRegularizer#1.drop_id_paths=false

And they are also available as indexed wildcards:

  • cls_regularizers="DropOutRegularizer, DropPathRegularizer"
  • {cls_regularizers#0}.prob --> DropOutRegularizer#0.prob
  • {cls_regularizers#1}.max_prob --> DropPathRegularizer#1.max_prob
  • {cls_regularizers#1}.drop_id_paths --> DropPathRegularizer#1.drop_id_paths

Register

UniNAS makes heavy use of a registering mechanism (via decorators in uninas/register.py). Classes of the same type (e.g. optimizers, networks, ...) will register in one RegisterDict.

Registered classes can be accessed via their name in the Register, no matter of their actual location in the code. This enables e.g. saving network topologies as nested dictionaries, no matter how complicated they are, since the class names are enough to find the classes in the code. (It also grants a certain amount of refactoring-freedom.)

Exporting networks

(Trained) Networks can easily be used by other PyTorch frameworks/scripts, see verify.py for an easy example.

Citation

The framework

we will possibly create a whitepaper at some point

@misc{kl2020uninas,
  author = {Kevin Alexander Laube},
  title = {UniNAS},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/cogsys-tuebingen/uninas}}
}

Inter-choice dependent super-network weights

  1. Train super-networks, e.g. via experiments/demo/inter_choice_weights/icw1_train_supernet_nats.py
    • you will need Cifar10, but can also easily use fake data or download it
    • to generate SubImageNet see uninas/utils/generate/data/subImageNet
  2. Evaluate the super-network, e.g. via experiments/demo/inter_choice_weights/icw2_eval_supernet.py
  3. View the evaluation results in the save dir, in TensorBoard or plotted directly
@article{laube2021interchoice,
  title={Inter-choice dependent super-network weights},
  author={Kevin Alexander Laube, Andreas Zell},
  journal={arXiv preprint arXiv:2104.11522},
  year={2021}
}
Owner
Cognitive Systems Research Group
Autonomous Mobile Robots; Bioinformatics; Chemo- and Geoinformatics; Evolutionary Algorithms; Machine Learning
Cognitive Systems Research Group
The official PyTorch code implementation of "Personalized Trajectory Prediction via Distribution Discrimination" in ICCV 2021.

Personalized Trajectory Prediction via Distribution Discrimination (DisDis) The official PyTorch code implementation of "Personalized Trajectory Predi

25 Dec 20, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Implementation of the pix2pix model on satellite images

This repo shows how to implement and use the pix2pix GAN model for image to image translation. The model is demonstrated on satellite images, and the

3 May 24, 2022
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022