Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Overview

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm

Overview

Multi-band Spectro Radiomertric images are images comprising of several channels / bands which hold information on band energy in each pixel.
The most common multi band channels are the RGB (Red Green Blue) channels of the visible light spectrum.

The images used are LANDSAT 8 satellite images and each image consist of three bands, namely: Thermal Infrared, Red and Near infrared bands corresponding to band 10, band 4 and band 5 of LANDSAT 8 satellite imagery with wavelengths of 10.895µm, 0.655µm and 0.865µm respectively.

Each pixel in each bands of each image are used to compute three features namely: NDVI (Normalized Differential Vegetative Index), PV (Portion of Vegetation) and LST (Land Surface Temperature).

The K-means cluster algorithm is initialized and the "number of clusters" hyper-parameter is set to 60. The algorithm is then trained on the extracted features and forms 60 different clusters represented by each of the 60 centroids.

These centroids are stored in the "ouput" folder and will be futher studied to learn what NDVI, PV and LST combinations a geograhical location might need to have for the occurence and spread of wild fire to be highly probable.



Features

NDVI (Normalized Differential Vegetative Index):

The Normalized Differential Vegetative Index is a metric for checking the presence and health of a vegetation in a given region.
It is basically how much RED light energy from the visible light spectrum is absorbed by the plant and how much NIR (near-infrared rays) it emmits.
Healthy vegetation absorbs red-light energy to fuel photosynthesis and create chlorophyll, and a plant with more chlorophyll will reflect more near-infrared energy than an unhealthy plant.
The NDVI ranges from -1 to 1, -1 corresponds to a very unhealthy plant and 1 corresponds to a very healthy plant.

The mathematical expression for NDVI is:
NDVI = (NIR - RED) / (NIR + RED)


PV (Portion of Vegetation):

Portion of Vegetation is the ratio of the vertical projection area of vegetation on the ground to the total vegetation area

The mathematical expression for PV is:
PV = (NDVI - NDVImin) / (NDVImin + NDVImax)
NDVImin is the minimum NDVI value a pixel holds in a single image
NDVImin is the maximum NDVI value a pixel holds in a single image


LST (Land Surface Temperature):

Land Surface Temperature is the radiative temperature / intensity of the land surface

The mathematical expression for LST is:
LST = BT / ( 1 + ( ( kn * BT / p ) * np.log(E) ) )

BT is brighness Temperature in celcius and is mathematically expressed as:
BT = (K2 / np.log( ( K1 / TOA ) + 1 )) - 273.15
where K1 and K2 are landsat 8 constants 774.8853 and 1321.0789 respectively

TOA (Top of Atmosphere) Reflectance is a unitless measurement which provides the ratio of radiation reflected to the incident solar radiation on a given surface.
It is mathematically expressed as:
TOA = ML * TIR + Al
where ML and Al are landsat 8 constants 3.42E-4 and 0.1 respectively.

p is mathematically expressed as:
p = hc/A
where h, c and a are plank's constant, speed of light and boltzmann constant respectively

E is emissivity of the land surface and is mathematically expressed as:
( Ev * PV * Rv ) + ( Es * ( 1 - PV ) * Rs ) + C
where:
Ev (Vegitation Emissivity) of location = 0.986
Es (Soil Emissivity) of location = 0.973
C (topography factor) of location = 0.0001
Rv =(0.92762 + (0.07033PV))
Rs=(0.99782 + (0.05362
PV))



Dependencies

  • Rasterio
  • Numpy
  • Pandas
  • Sklearn
  • Pickle


Setup

clone the repository and download the 'requirement.txt' files, then open terminal in the working directory and type 'pip install -r requirements.txt' to install all the requirements for this project.
Owner
Chibueze Henry
A machine learning enthusiast and developer as well as a full-stack web developer
Chibueze Henry
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
Contextual Attention Network: Transformer Meets U-Net

Contextual Attention Network: Transformer Meets U-Net Contexual attention network for medical image segmentation with state of the art results on skin

Reza Azad 67 Nov 28, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Catch-all collection of generative art made using processing

Generative art with Processing.py Some art I have created for fun. Dependencies Processing for Python, see how to download/use here Packages contained

2 Mar 12, 2022