Open-AI's DALL-E for large scale training in mesh-tensorflow.

Overview

DALL-E in Mesh-Tensorflow [WIP]

Open-AI's DALL-E in Mesh-Tensorflow.

If this is similarly efficient to GPT-Neo, this repo should be able to train models up to, and larger than, the size of Open-AI's DALL-E (12B params).

No pretrained models... Yet.

Thanks to Ben Wang for the tf vae implementation as well as getting the mtf version working, and Aran Komatsuzaki for help building the mtf VAE and input pipeline.

Setup

git clone https://github.com/EleutherAI/GPTNeo
cd GPTNeo
pip3 install -r requirements.txt

Training Setup

Runs on TPUs, untested on GPUs but should work in theory. The example configs are designed to run on a TPU v3-32 pod.

To set up TPUs, sign up for Google Cloud Platform, and create a storage bucket.

Create your VM through a google shell (https://ssh.cloud.google.com/) with ctpu up --vm-only so that it can connect to your Google bucket and TPUs and setup the repo as above.

VAE pretraining

DALLE needs a pretrained VAE to compress images to tokens. To run the VAE pretraining, adjust the params in configs/vae_example.json to a glob path pointing to a dataset of jpgs, and adjust image size to the appropriate size.

  "dataset": {
    "train_path": "gs://neo-datasets/CIFAR-10-images/train/**/*.jpg",
    "eval_path": "gs://neo-datasets/CIFAR-10-images/test/**/*.jpg",
    "image_size": 32
  }

Once this is all set up, create your TPU, then run:

python train_vae_tf.py --tpu your_tpu_name --model vae_example

The training logs image tensors and loss values, to check progress, you can run:

tensorboard --logdir your_model_dir

Dataset Creation [DALL-E]

Once the VAE is pretrained, you can move on to DALL-E.

Currently we are training on a dummy dataset. A public, large-scale dataset for DALL-E is in the works. In the meantime, to generate some dummy data, run:

python src/data/create_tfrecords.py

This should download CIFAR-10, and generate some random captions to act as text inputs.

Custom datasets should be formatted in a folder, with a jsonl file in the root folder containing caption data and paths to the respective images, as follows:

Folder structure:

        data_folder
            jsonl_file
            folder_1
                img1
                img2
                ...
            folder_2
                img1
                img2
                ...
            ...

jsonl structure:
    {"image_path": folder_1/img1, "caption": "some words"}
    {"image_path": folder_2/img2, "caption": "more words"}
    ...

you can then use the create_paired_dataset function in src/data/create_tfrecords.py to encode the dataset into tfrecords for use in training.

Once the dataset is created, copy it over to your bucket with gsutil:

gsutil cp -r DALLE-tfrecords gs://neo-datasets/

And finally, run training with

python train_dalle.py --tpu your_tpu_name --model dalle_example

Config Guide

VAE:

{
  "model_type": "vae",
  "dataset": {
    "train_path": "gs://neo-datasets/CIFAR-10-images/train/**/*.jpg", # glob path to training images
    "eval_path": "gs://neo-datasets/CIFAR-10-images/test/**/*.jpg", # glob path to eval images
    "image_size": 32 # size of images (all images will be cropped / padded to this size)
  },
  "train_batch_size": 32, 
  "eval_batch_size": 32,
  "predict_batch_size": 32,
  "steps_per_checkpoint": 1000, # how often to save a checkpoint
  "iterations": 500, # number of batches to infeed to the tpu at a time. Must be < steps_per_checkpoint
  "train_steps": 100000, # total training steps
  "eval_steps": 0, # run evaluation for this many steps every steps_per_checkpoint
  "model_path": "gs://neo-models/vae_test2/", # directory in which to save the model
  "mesh_shape": "data:16,model:2", # mapping of processors to named dimensions - see mesh-tensorflow repo for more info
  "layout": "batch_dim:data", # which named dimensions of the model to split across the mesh - see mesh-tensorflow repo for more info
  "num_tokens": 512, # vocab size
  "dim": 512, 
  "hidden_dim": 64, # size of hidden dim
  "n_channels": 3, # number of input channels
  "bf_16": false, # if true, the model is trained with bfloat16 precision
  "lr": 0.001, # learning rate [by default learning rate starts at this value, then decays to 10% of this value over the course of the training]
  "num_layers": 3, # number of blocks in the encoder / decoder
  "train_gumbel_hard": true, # whether to use hard or soft gumbel_softmax
  "eval_gumbel_hard": true
}

DALL-E:

{
  "model_type": "dalle",
  "dataset": {
    "train_path": "gs://neo-datasets/DALLE-tfrecords/*.tfrecords", # glob path to tfrecords data
    "eval_path": "gs://neo-datasets/DALLE-tfrecords/*.tfrecords",
    "image_size": 32 # size of images (all images will be cropped / padded to this size)
  },
  "train_batch_size": 32, # see above
  "eval_batch_size": 32,
  "predict_batch_size": 32,
  "steps_per_checkpoint": 1000,
  "iterations": 500,
  "train_steps": 100000,
  "predict_steps": 0,
  "eval_steps": 0,
  "n_channels": 3,
  "bf_16": false,
  "lr": 0.001,
  "model_path": "gs://neo-models/dalle_test/",
  "mesh_shape": "data:16,model:2",
  "layout": "batch_dim:data",
  "n_embd": 512, # size of embedding dim
  "text_vocab_size": 50258, # vocabulary size of the text tokenizer
  "image_vocab_size": 512, # vocabulary size of the vae - should equal num_tokens above
  "text_seq_len": 256, # length of text inputs (all inputs longer / shorter will be truncated / padded)
  "n_layers": 6, 
  "n_heads": 4, # number of attention heads. For best performance, n_embd / n_heads should equal 128
  "vae_model": "vae_example" # path to or name of vae model config
}
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
Pixray is an image generation system

Pixray is an image generation system

pixray 883 Jan 07, 2023
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023