Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

Overview

Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contain two filtering methods. The first method uses normal-vector, and fit to plane. The second method utilizes voxel adjacency, and fit to plane. This repository contains the code to reproduce the results presented in the paper following paper:

*Diaz, Nelson, et al. "Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)," Accepted to International Journal of Applied Earth Observation and Geoinformation, 2021.

If you use this code, please consider citing our paper with the following Bibtex code:

@article{DIAZ2021102629,
title = {Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)},
journal = {International Journal of Applied Earth Observation and Geoinformation},
volume = {105},
pages = {102629},
year = {2021},
issn = {0303-2434},
doi = {https://doi.org/10.1016/j.jag.2021.102629},
url = {https://www.sciencedirect.com/science/article/pii/S0303243421003366},
author = {Nelson Diaz and Omar Gallo and Jhon Caceres and Hernan Porras},
keywords = {Ground filter, Normal vector, PCA, TLS, Voxel},
abstract = {3D modeling based on point clouds requires ground-filtering algorithms that separate ground from non-ground objects. This study presents two ground filtering algorithms. The first one is based on normal vectors. It has two variants depending on the procedure to compute the k-nearest neighbors. The second algorithm is based on transforming the cloud points into a voxel structure. To evaluate them, the two algorithms are compared according to their execution time, effectiveness and efficiency. Results show that the ground filtering algorithm based on the voxel structure is faster in terms of execution time, effectiveness, and efficiency than the normal vector ground filtering.}
}

Introduction

The software allows simulating the ground filtering process in point clouds using machine learning techniques. In particular, this repository contains the algorithms and functions to identify points corresponding to the ground from a registered point cloud.

Requirements

This module requires the following datasets Ajaccio_2.ply, Ajaccio_57.ply y dijon_9.ply, which may be downloaded from the following link. In addition, scans with groundtruth are available in link.

The datasets may be included in the folder dataset.

  • Recommended modules

It is recommended to install the toolbox of Computer Vision (TCV). TCV contains the point cloud processing with plenty of functions and algorithms for the processing of point clouds.

Installation

To run the code, use the function MainNormal.m that computes principal component analysis for each point and its corresponding K-nearest neighbors, then a Naive Bayes classifier improves the ground filtering. In the last stage, the points are adjusted to a plane, discarding the farthest points. The second algorithm runs with the function MainVoxel.m that. The algorithm joints the points into voxels to reduce the computation time of the nearest neighbor. The algorithm discards the distant voxels with height thresholding, and then the remaining points are adjusted to a plane.

Configuration

The tools are developed in Matlab R2019b.

Owner
He received a Ph.D. in Engineering in 2020 from the Universidad Industrial de Santander, Colombia.
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
Introducing neural networks to predict stock prices

IntroNeuralNetworks in Python: A Template Project IntroNeuralNetworks is a project that introduces neural networks and illustrates an example of how o

Vivek Palaniappan 637 Jan 04, 2023
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
PyTorch implementation of DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration (BMVC 2021)

DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [video] [paper] [supplementary] [data] [thesis] Introduction De

Natalie Lang 10 Dec 14, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022