Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

Overview

Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contain two filtering methods. The first method uses normal-vector, and fit to plane. The second method utilizes voxel adjacency, and fit to plane. This repository contains the code to reproduce the results presented in the paper following paper:

*Diaz, Nelson, et al. "Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)," Accepted to International Journal of Applied Earth Observation and Geoinformation, 2021.

If you use this code, please consider citing our paper with the following Bibtex code:

@article{DIAZ2021102629,
title = {Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)},
journal = {International Journal of Applied Earth Observation and Geoinformation},
volume = {105},
pages = {102629},
year = {2021},
issn = {0303-2434},
doi = {https://doi.org/10.1016/j.jag.2021.102629},
url = {https://www.sciencedirect.com/science/article/pii/S0303243421003366},
author = {Nelson Diaz and Omar Gallo and Jhon Caceres and Hernan Porras},
keywords = {Ground filter, Normal vector, PCA, TLS, Voxel},
abstract = {3D modeling based on point clouds requires ground-filtering algorithms that separate ground from non-ground objects. This study presents two ground filtering algorithms. The first one is based on normal vectors. It has two variants depending on the procedure to compute the k-nearest neighbors. The second algorithm is based on transforming the cloud points into a voxel structure. To evaluate them, the two algorithms are compared according to their execution time, effectiveness and efficiency. Results show that the ground filtering algorithm based on the voxel structure is faster in terms of execution time, effectiveness, and efficiency than the normal vector ground filtering.}
}

Introduction

The software allows simulating the ground filtering process in point clouds using machine learning techniques. In particular, this repository contains the algorithms and functions to identify points corresponding to the ground from a registered point cloud.

Requirements

This module requires the following datasets Ajaccio_2.ply, Ajaccio_57.ply y dijon_9.ply, which may be downloaded from the following link. In addition, scans with groundtruth are available in link.

The datasets may be included in the folder dataset.

  • Recommended modules

It is recommended to install the toolbox of Computer Vision (TCV). TCV contains the point cloud processing with plenty of functions and algorithms for the processing of point clouds.

Installation

To run the code, use the function MainNormal.m that computes principal component analysis for each point and its corresponding K-nearest neighbors, then a Naive Bayes classifier improves the ground filtering. In the last stage, the points are adjusted to a plane, discarding the farthest points. The second algorithm runs with the function MainVoxel.m that. The algorithm joints the points into voxels to reduce the computation time of the nearest neighbor. The algorithm discards the distant voxels with height thresholding, and then the remaining points are adjusted to a plane.

Configuration

The tools are developed in Matlab R2019b.

Owner
He received a Ph.D. in Engineering in 2020 from the Universidad Industrial de Santander, Colombia.
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

ONNX-GLPDepth - Python scripts for performing monocular depth estimation using the GLPDepth model in ONNX

Ibai Gorordo 18 Nov 06, 2022
Exploring the Dual-task Correlation for Pose Guided Person Image Generation

Dual-task Pose Transformer Network The source code for our paper "Exploring Dual-task Correlation for Pose Guided Person Image Generation“ (CVPR2022)

63 Dec 15, 2022
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
Official PyTorch Implementation of Unsupervised Learning of Scene Flow Estimation Fusing with Local Rigidity

UnRigidFlow This is the official PyTorch implementation of UnRigidFlow (IJCAI2019). Here are two sample results (~10MB gif for each) of our unsupervis

Liang Liu 28 Nov 16, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
基于深度强化学习的原神自动钓鱼AI

原神自动钓鱼AI由YOLOX, DQN两部分模型组成。使用迁移学习,半监督学习进行训练。 模型也包含一些使用opencv等传统数字图像处理方法实现的不可学习部分。

4.2k Jan 01, 2023
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022