This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

Overview

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition

Framework Architecture

Image

Requirements

  • Pytorch==1.0.1 or higher
  • opencv version: 4.1.0

Datasets

  • XMU:
    • Y. Huang, R. Wu, Y. Sun, W. Wang, and X. Ding, Vehicle logo recog775 nition system based on convolutional neural networks with a pretraining strategy, IEEE Transactions on Intelligent Transportation Systems 16 (4) (2015) 1951-1960.
    • https://xmu-smartdsp.github.io/VehicleLogoRecognition.html
  • HFUT-VL1 and HFUT-VL2:
    • Y. Yu, J. Wang, J. Lu, Y. Xie, and Z. Nie, Vehicle logo recognition based on overlapping enhanced patterns of oriented edge magnitudes, Computers & Electrical Engineering 71 (2018) 273–283.
    • https://github.com/HFUT-VL/HFUT-VL-dataset
  • CompCars:
    • L. Yang, P. Luo, C. C. Loy, and X. Tang, A large-scale car dataset for fine-grained categorization and verification, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 3973-3981.
    • http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/index.html
  • VLD-45:

VLF-net for classification (Vehicle logo feature extraction network)

  • Training with the classification pipeline

    • training XMU dataset
    python train.py --dataset_name XMU --framework Classification_Network
    
    • training HFUT-VL1 dataset
    python train.py --dataset_name HFUT_VL1 --framework Classification_Network
    
    • training HFUT-VL2 dataset
    python train.py --dataset_name HFUT_VL2 --framework Classification_Network
    
    • training CompCars dataset
    python train.py --dataset_name CompCars --framework Classification_Network
    
    • training VLD-45 dataset
    python train.py --dataset_name VLD-45 --framework Classification_Network
    
  • Testing with the classification pipeline

    • testing XMU dataset
    python test.py --dataset_name XMU --framework Classification_Network
    
    • testing HFUT-VL1 dataset
    python test.py --dataset_name HFUT_VL1 --framework Classification_Network
    
    • testing HFUT-VL2 dataset
    python test.py --dataset_name HFUT_VL2 --framework Classification_Network
    
    • testing CompCars dataset
    python test.py --dataset_name CompCars --framework Classification_Network
    
    • testing VLD-45 dataset
    python test.py --dataset_name VLD-45 --framework Classification_Network
    

VLF-net for category-consistent mask learning

  • Step 1:

    • Generation of the category-consistent masks. There are more details for the co-localization method PSOL.
    • Please note that we use the generated binary-masks directly instead of the predicted boxes.
  • Step 2:

    • After generating the category-consistent masks, we can further organize the training and testing data which are as below:
    root/
          test/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
          train/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
          mask/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
    
    Note that each image has the corresponding generated category-consistent mask.
  • Step 3:

    • Now, you can training the model with the category-consistent mask learning framework

    • Training with the category-consistent deep network learning framework pipeline

      • training XMU dataset
      python train.py --dataset_name XMU --framework CCML_Network
      
      • training HFUT-VL1 dataset
      python train.py --dataset_name HFUT_VL1 --framework CCML_Network
      
      • training HFUT-VL2 dataset
      python train.py --dataset_name HFUT_VL2 --framework CCML_Network
      
      • training CompCars dataset
      python train.py --dataset_name CompCars --framework CCML_Network
      
      • training VLD-45 dataset
      python train.py --dataset_name VLD-45 --framework CCML_Network
      
    • Testing with the category-consistent deep network learning framework pipeline

      • testing XMU dataset
      python test.py --dataset_name XMU --framework CCML_Network
      
      • testing HFUT-VL1 dataset
      python test.py --dataset_name HFUT_VL1 --framework CCML_Network
      
      • testing HFUT-VL2 dataset
      python test.py --dataset_name HFUT_VL2 --framework CCML_Network
      
      • testing CompCars dataset
      python test.py --dataset_name CompCars --framework CCML_Network
      
      • testing VLD-45 dataset
      python test.py --dataset_name VLD-45 --framework CCML_Network
      

Experiments

Image

Image

Bibtex

  • If you find our code useful, please cite our paper:
    @article{LU2021,
    title = {Category-consistent deep network learning for accurate vehicle logo recognition},
      journal = {Neurocomputing},
      year = {2021},
      issn = {0925-2312},
      doi = {https://doi.org/10.1016/j.neucom.2021.08.030},
      url = {https://www.sciencedirect.com/science/article/pii/S0925231221012145},
      author = {Wanglong Lu and Hanli Zhao and Qi He and Hui Huang and Xiaogang Jin}
      }
    

Acknowledgements

Owner
Wanglong Lu
I am a Ph.D. student at Ubiquitous Computing and Machine Learning Research Lab (UCML), Memorial University of Newfoundland.
Wanglong Lu
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
Solution to the Weather4cast 2021 challenge

This code was used for the entry by the team "antfugue" for the Weather4cast 2021 Challenge. Below, you can find the instructions for generating predi

Jussi Leinonen 13 Jan 03, 2023
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022