This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

Overview

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition

Framework Architecture

Image

Requirements

  • Pytorch==1.0.1 or higher
  • opencv version: 4.1.0

Datasets

  • XMU:
    • Y. Huang, R. Wu, Y. Sun, W. Wang, and X. Ding, Vehicle logo recog775 nition system based on convolutional neural networks with a pretraining strategy, IEEE Transactions on Intelligent Transportation Systems 16 (4) (2015) 1951-1960.
    • https://xmu-smartdsp.github.io/VehicleLogoRecognition.html
  • HFUT-VL1 and HFUT-VL2:
    • Y. Yu, J. Wang, J. Lu, Y. Xie, and Z. Nie, Vehicle logo recognition based on overlapping enhanced patterns of oriented edge magnitudes, Computers & Electrical Engineering 71 (2018) 273–283.
    • https://github.com/HFUT-VL/HFUT-VL-dataset
  • CompCars:
    • L. Yang, P. Luo, C. C. Loy, and X. Tang, A large-scale car dataset for fine-grained categorization and verification, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 3973-3981.
    • http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/index.html
  • VLD-45:

VLF-net for classification (Vehicle logo feature extraction network)

  • Training with the classification pipeline

    • training XMU dataset
    python train.py --dataset_name XMU --framework Classification_Network
    
    • training HFUT-VL1 dataset
    python train.py --dataset_name HFUT_VL1 --framework Classification_Network
    
    • training HFUT-VL2 dataset
    python train.py --dataset_name HFUT_VL2 --framework Classification_Network
    
    • training CompCars dataset
    python train.py --dataset_name CompCars --framework Classification_Network
    
    • training VLD-45 dataset
    python train.py --dataset_name VLD-45 --framework Classification_Network
    
  • Testing with the classification pipeline

    • testing XMU dataset
    python test.py --dataset_name XMU --framework Classification_Network
    
    • testing HFUT-VL1 dataset
    python test.py --dataset_name HFUT_VL1 --framework Classification_Network
    
    • testing HFUT-VL2 dataset
    python test.py --dataset_name HFUT_VL2 --framework Classification_Network
    
    • testing CompCars dataset
    python test.py --dataset_name CompCars --framework Classification_Network
    
    • testing VLD-45 dataset
    python test.py --dataset_name VLD-45 --framework Classification_Network
    

VLF-net for category-consistent mask learning

  • Step 1:

    • Generation of the category-consistent masks. There are more details for the co-localization method PSOL.
    • Please note that we use the generated binary-masks directly instead of the predicted boxes.
  • Step 2:

    • After generating the category-consistent masks, we can further organize the training and testing data which are as below:
    root/
          test/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
          train/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
          mask/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
    
    Note that each image has the corresponding generated category-consistent mask.
  • Step 3:

    • Now, you can training the model with the category-consistent mask learning framework

    • Training with the category-consistent deep network learning framework pipeline

      • training XMU dataset
      python train.py --dataset_name XMU --framework CCML_Network
      
      • training HFUT-VL1 dataset
      python train.py --dataset_name HFUT_VL1 --framework CCML_Network
      
      • training HFUT-VL2 dataset
      python train.py --dataset_name HFUT_VL2 --framework CCML_Network
      
      • training CompCars dataset
      python train.py --dataset_name CompCars --framework CCML_Network
      
      • training VLD-45 dataset
      python train.py --dataset_name VLD-45 --framework CCML_Network
      
    • Testing with the category-consistent deep network learning framework pipeline

      • testing XMU dataset
      python test.py --dataset_name XMU --framework CCML_Network
      
      • testing HFUT-VL1 dataset
      python test.py --dataset_name HFUT_VL1 --framework CCML_Network
      
      • testing HFUT-VL2 dataset
      python test.py --dataset_name HFUT_VL2 --framework CCML_Network
      
      • testing CompCars dataset
      python test.py --dataset_name CompCars --framework CCML_Network
      
      • testing VLD-45 dataset
      python test.py --dataset_name VLD-45 --framework CCML_Network
      

Experiments

Image

Image

Bibtex

  • If you find our code useful, please cite our paper:
    @article{LU2021,
    title = {Category-consistent deep network learning for accurate vehicle logo recognition},
      journal = {Neurocomputing},
      year = {2021},
      issn = {0925-2312},
      doi = {https://doi.org/10.1016/j.neucom.2021.08.030},
      url = {https://www.sciencedirect.com/science/article/pii/S0925231221012145},
      author = {Wanglong Lu and Hanli Zhao and Qi He and Hui Huang and Xiaogang Jin}
      }
    

Acknowledgements

Owner
Wanglong Lu
I am a Ph.D. student at Ubiquitous Computing and Machine Learning Research Lab (UCML), Memorial University of Newfoundland.
Wanglong Lu
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 03, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
C3DPO - Canonical 3D Pose Networks for Non-rigid Structure From Motion.

C3DPO: Canonical 3D Pose Networks for Non-Rigid Structure From Motion By: David Novotny, Nikhila Ravi, Benjamin Graham, Natalia Neverova, Andrea Vedal

Meta Research 309 Dec 16, 2022
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
A TensorFlow implementation of SOFA, the Simulator for OFfline LeArning and evaluation.

SOFA This repository is the implementation of SOFA, the Simulator for OFfline leArning and evaluation. Keeping Dataset Biases out of the Simulation: A

22 Nov 23, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022