The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

Overview

CircleCI Github Actions Codecov Documentation Status Pypi Version Black Python Versions DOI

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory.

Additionally, contributions at the algorithm level are available in the package mlresearch.

Installation

A Python distribution of version 3.8 or 3.9 is required to run this project. Due to the computational limitations of the free tiers in CI/CD platforms, currently we cannot ensure compatibility with earlier Python versions.

ML-Research requires:

  • numpy (>= 1.14.6)
  • pandas (>= 1.3.5)
  • sklearn (>= 1.0.0)
  • imblearn (>= 0.8.0)
  • rich (>= 10.16.1)
  • matplotlib (>= 2.2.3)
  • seaborn (>= 0.9.0)
  • rlearn (>= 0.2.1)
  • pytorch (>= 1.10.1)
  • torchvision (>= 0.11.2)
  • pytorch_lightning (>= 1.5.8)

User Installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip :

pip install -U ml-research

The documentation includes more detailed installation instructions.

Installing from source

The following commands should allow you to setup the development version of the project with minimal effort:

# Clone the project.
git clone https://github.com/joaopfonseca/ml-research.git
cd ml-research

# Create and activate an environment 
make environment 
conda activate mlresearch # Adapt this line accordingly if you're not running conda

# Install project requirements and the research package
pip install .[tests,docs]

Citing ML-Research

If you use ML-Research in a scientific publication, we would appreciate citations to the following paper:

@article{Fonseca2021,
  doi = {10.3390/RS13132619},
  url = {https://doi.org/10.3390/RS13132619},
  keywords = {SMOTE,active learning,artificial data generation,land use/land cover classification,oversampling},
  year = {2021},
  month = {jul},
  publisher = {Multidisciplinary Digital Publishing Institute},
  volume = {13},
  pages = {2619},
  author = {Fonseca, Joao and Douzas, Georgios and Bacao, Fernando},
  title = {{Increasing the Effectiveness of Active Learning: Introducing Artificial Data Generation in Active Learning for Land Use/Land Cover Classification}},
  journal = {Remote Sensing}
}
You might also like...
A collection of 100 Deep Learning images and visualizations
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

Easily pull telemetry data and create beautiful visualizations for analysis.
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximation), to creating novel active learning strategies.

Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

Memoized coduals - Shows that it is possible to implement reverse mode autodiff using a variation on the dual numbers called the codual numbers This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Comments
  • Consider modifying default BYOL hyper-parameters for smaller batch sizes

    Consider modifying default BYOL hyper-parameters for smaller batch sizes

    Applicable to both BYOL and SimSiam: Some hyperparameters might need to be added. Some are hard-coded to the default values.

    Taken from the BYOL paper: Screenshot from 2022-03-18 17-54-43

    opened by joaopfonseca 1
  • Remove computer vision models, augmentations and datasets

    Remove computer vision models, augmentations and datasets

    They will be removed in the next release since:

    1. I'm not going to used these methods anytime soon and I don't have the time to test them properly
    2. They are out of scope of the library. It is meant to be used for machine learning techniques, focused on tabular data. In the feature it may be worth considering the development of another library for computer vision, for example.
    3. Setting Pytorch as a dependency for a reduced part of the library isn't particularly efficient.
    wontfix 
    opened by joaopfonseca 0
  • Host all raw data from datasets submodule elsewhere

    Host all raw data from datasets submodule elsewhere

    With Python 3.11, downloading some datasets returns an SSL error (when unsafe legacy renegotiation disabled). It happens when the server doesn't support "RFC 5746 secure renegotiation" and the client is using OpenSSL 3, which enforces that standard by default (source).

    Hosting the raw data elsewhere should fix this issue.

    bug 
    opened by joaopfonseca 0
  • Review and add examples to documentation

    Review and add examples to documentation

    The readthedocs page is getting a bit outdated:

    • [x] Add support for Python 3.10
    • [ ] Add support for Python 3.11
    • [ ] Check for missing, deleted or renamed functions and objects
    • [ ] Review content as a whole
    • [ ] Add examples to documentation
    • [ ] Add dependency groups to documentation
    • [ ] README contains dependencies that will no longer be used
    documentation 
    opened by joaopfonseca 0
Releases(v0.4a2)
  • v0.4a2(Jan 2, 2023)

    NOTE: This pre-release contains implementations of algorithms for Self-supervised learning (BYOL and SimSiam). This release also contains objects to download image data from Pytorch and general definitions for image augmentations. They will be removed in the next release since:

    1. I'm not going to used these methods anytime soon and I don't have the time to test them properly
    2. They are out of scope of the library. It is meant to be used for machine learning techniques, focused on tabular data. In the feature it may be worth considering the development of another library for computer vision, for example.
    3. Setting Pytorch as a dependency for a reduced part of the library isn't particularly efficient.

    Full Changelog: https://github.com/joaopfonseca/ml-research/compare/v0.4a1...v0.4a2

    Source code(tar.gz)
    Source code(zip)
  • v0.4a1(Apr 14, 2022)

  • v0.3.4(Feb 14, 2022)

  • v0.3.3(Feb 14, 2022)

  • v0.3.2(Feb 14, 2022)

  • v0.3.1(Feb 14, 2022)

  • v0.3.0(Feb 14, 2022)

  • v0.2.1(Feb 14, 2022)

  • v0.2.0(Feb 14, 2022)

  • 0.1.0(Feb 14, 2022)

Owner
João Fonseca
PhD student | Researcher | Invited lecturer @ NOVA Information Management School
João Fonseca
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Vince 0 Jul 13, 2021
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022