Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Overview

Deep Image Search - AI-Based Image Search Engine

Brain+Machine

Deep Image Search is an AI-based image search engine that includes deep transfer learning features Extraction and tree-based vectorized search

Generic badge Generic badge Generic badge Generic badge Generic badgeGeneric badge

Brain+Machine Creators

Nilesh Verma

Features

  • Faster Search O(logN) Complexity.
  • High Accurate Output Result.
  • Best for Implementing on python based web application or APIs.
  • Best implementation for College students and freshers for project creation.
  • Applications are Images based E-commerce recommendation, Social media and other image-based platforms that want to implement image recommendation and search.

Installation

This library is compatible with both windows and Linux system you can just use PIP command to install this library on your system:

pip install DeepImageSearch

If you are facing any VS C++ 14 related issue in windows during installation, kindly refer to following solution: Pip error: Microsoft Visual C++ 14.0 is required

How To Use?

We have provided the Demo folder under the GitHub repository, you can find the example in both .py and .ipynb file. Following are the ideal flow of the code:

1. Importing the Important Classes

There are three important classes you need to load LoadData - for data loading, Index - for indexing the images to database/folder, SearchImage - For searching and Plotting the images

# Importing the proper classes
from DeepImageSearch import Index,LoadData,SearchImage

2. Loading the Images Data

For loading the images data we need to use the LoadData object, from there we can import images from the CSV file and Single/Multiple Folders.

# load the Images from the Folder (You can also import data from multiple folders in python list type)
image_list = LoadData().from_folder(['images','wiki-images'])
# Load data from CSV file
image_list = LoadData().from_csv(csv_file_path='your_csv_file.csv',images_column_name='column_name)

3. Indexing and Saving The File in Local Folder

For faster retrieval we are using tree-based indexing techniques for Images features, So for that, we need to store meta-information on the local path [meta-data-files/] folder.

# For Faster Serching we need to index Data first, After Indexing all the meta data stored on the local path
Index(image_list).Start()

3. Searching

Searching operation is performed by the following method:

# for searching, you need to give the image path and the number of the similar image you want
SearchImage().get_similar_images(image_path=image_list[0],number_of_images=5)

you can also plot some similar images for viewing purpose by following the code method:

# If you want to plot similar images you can use this method, It will plot 16 most similar images from the data index
SearchImage().plot_similar_images(image_path = image_list[0])

Complete Code

# Importing the proper classes
from DeepImageSearch import Index,LoadData,SearchImage
# load the Images from the Folder (You can also import data from multiple folder in python list type)
image_list = LoadData().from_folder(['images','wiki-images'])
# For Faster Serching we need to index Data first, After Indexing all the meta data stored on the local path
Index(image_list).Start()
# for searching you need to give the image path and the number of similar image you want
SearchImage().get_similar_images(image_path=image_list[0],number_of_images=5)
# If you want to plot similar images the you can use this method, It will plot 16 most similar images from the data index
SearchImage().plot_similar_images(image_path = image_list[0])

License

MIT License

Copyright (c) 2021 Nilesh Verma

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

More cool features will be added in future. Feel free to give suggestions, report bugs and contribute.

You might also like...
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My moti

Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

Comments
  • Similar images

    Similar images

    The function to plot similar images plot 16 images, how do we know which image is related to or similar to the which image according to the algorithm?

    I mean like it should say these two are similar and the other two are similar to each other, no?

    opened by amrrs 3
  • TypeError: show() takes 1 positional argument but 2 were given

    TypeError: show() takes 1 positional argument but 2 were given

    Classification.py:

    from DeepImageSearch import Index, LoadData, SearchImage

    folders = [] folders.append("monos_segmented") image_list = LoadData().from_folder(folders)

    print (image_list)

    Index(image_list).Start()

    SearchImage().get_similar_images(image_path=image_list[0],number_of_images=5)

    SearchImage().plot_similar_images(image_path = image_list[0])

    Running...

    Traceback (most recent call last): File "Classification.py", line 13, in SearchImage().plot_similar_images(image_path = image_list[0]) File "/home/mike/.local/lib/python3.8/site-packages/DeepImageSearch/DeepImageSearch.py", line 132, in plot_similar_images plt.show(fig) File "/home/mike/.local/lib/python3.8/site-packages/matplotlib/pyplot.py", line 378, in show return _backend_mod.show(*args, **kwargs) TypeError: show() takes 1 positional argument but 2 were given

    opened by mikedorin 1
  • Single thread.

    Single thread.

    Hello,

    What i want to ask is, cant we make extracting features parallel? I'm using 3060 Ti and it seems a little bit slow for this GPU.

    Or am i wrong?

    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3070/242451 [02:25<3:08:09, 21.20it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 13ms/step                                                                                                                    | 3073/242451 [02:25<3:07:27, 21.28it/s]
    1/1 [==============================] - 0s 15ms/step
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3076/242451 [02:25<3:07:21, 21.29it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3079/242451 [02:25<3:06:30, 21.39it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3082/242451 [02:26<3:07:04, 21.33it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3085/242451 [02:26<3:08:38, 21.15it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3088/242451 [02:26<3:09:21, 21.07it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 15ms/step                                                                                                                    | 3091/242451 [02:26<3:09:04, 21.10it/s]
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 13ms/step                                                                                                                    | 3094/242451 [02:26<3:11:12, 20.86it/s]
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step
    

    Best regards.

    opened by ucyildirim 0
  • Problems with TensorFlow

    Problems with TensorFlow

    Hello,

    when trying to install DeepImageSearch on a Windows machine I got this:

    ERROR: Cannot install deepimagesearch==1.0, deepimagesearch==1.1, deepimagesearch==1.2, deepimagesearch==1.3 and deepimagesearch==1.4 because these package versions have conflicting dependencies.
    
    The conflict is caused by:
        deepimagesearch 1.4 depends on tensorflow
        deepimagesearch 1.3 depends on tensorflow
        deepimagesearch 1.2 depends on tensorflow
        deepimagesearch 1.1 depends on tensorflow
        deepimagesearch 1.0 depends on tensorflow`
    

    I tried to install it like stated here: https://stackoverflow.com/questions/69751318/i-had-trouble-installing-python-deepimagesearch-library but also same error as mentioned there by using this.

    ERROR: Could not find a version that satisfies the requirement tensorflow==2.3.2 (from versions: none)
    ERROR: No matching distribution found for tensorflow==2.3.
    

    Digging into TensorFlow itself, it seems that it is not running on windows properly anymore beginning from version 2.11 - that would not matter, if the version required by your library would still be available

    Using Windows 10 with Python 3.11.0 (main, Oct 24 2022, 18:26:48) [MSC v.1933 64 bit (AMD64)] on win32

    Installing https://pypi.org/project/tensorflow-intel/ and changing requirements in your library did not help either.

    So, what else I can do ?

    Thanks in advance for any help !

    opened by Creat1veM1nd 6
Owner
Data Science Enthusiast & Digital Influencer
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
Artstation-Artistic-face-HQ Dataset (AAHQ)

Artstation-Artistic-face-HQ Dataset (AAHQ) Artstation-Artistic-face-HQ (AAHQ) is a high-quality image dataset of artistic-face images. It is proposed

onion 105 Dec 16, 2022
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恊泽 140 Jan 02, 2023
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation

img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation Figure 1: We estimate the 6DoF rigid transformation of a 3D face (rendered in si

VĂ­tor Albiero 519 Dec 29, 2022
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022