Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Overview

Build Status Travis Build Status AppVeyor DOI arXiv.org Python Versions PyPI Version CRAN Version

Regularized Greedy Forest

Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better results than gradient boosted decision trees (GBDT) on a number of datasets and it has been used to win a few Kaggle competitions. Unlike the traditional boosted decision tree approach, RGF works directly with the underlying forest structure. RGF integrates two ideas: one is to include tree-structured regularization into the learning formulation; and the other is to employ the fully-corrective regularized greedy algorithm.

This repository contains the following implementations of the RGF algorithm:

  • RGF: original implementation from the paper;
  • FastRGF: multi-core implementation with some simplifications;
  • rgf_python: wrapper of both RGF and FastRGF implementations for Python;
  • R package: wrapper of rgf_python for R.

You may want to get interesting information about RGF from the posts collected in Awesome RGF.

Comments
  • Support wheels

    Support wheels

    Since rgf_python hasn't any special requirements (for compiler, environment, etc.), I think it good idea to have wheels on PyPI site (and the sources in .tar.gz, of course). I believe providing successfully compiled binaries will prevent many strange errors like recent ones.

    We need wheels for two platforms: first for macOS and Linux and second for Windows.

    The final result should be similar to this one: image

    But each wheel for each platform should have 32bit and 64bit version.

    Binaries we could get from Travis and Appveyor as artifacts (I can do this). The one problem I see now is that Travis hasn't 32bit machines, but I believe we'll overcome this problem 😃 .

    @fukatani When you'll have time, please search how to appropriate name wheels according to target platforms and how to post them at PyPI. Or I can do it more later.

    enhancement 
    opened by StrikerRUS 35
  • error:Exception: Model learning result is not found in /tmp/rgf. This is rgf_python error.

    error:Exception: Model learning result is not found in /tmp/rgf. This is rgf_python error.

    How to deal with this error:

    Ran 0 examples: 0 success, 0 failure, 0 error

    None Ran 0 examples: 0 success, 0 failure, 0 error

    None Ran 0 examples: 0 success, 0 failure, 0 error

    None Traceback (most recent call last): File "/Users/k.den/Desktop/For_Submission/1_source_code/test.py", line 25, in pred = rgf_model.predict_proba(X_eval)[:, 1] File "/usr/local/lib/python3.6/site-packages/rgf/sklearn.py", line 652, in predict_proba class_proba = clf.predict_proba(X) File "/usr/local/lib/python3.6/site-packages/rgf/sklearn.py", line 798, in predict_proba 'This is rgf_python error.'.format(_TEMP_PATH)) Exception: Model learning result is not found in /tmp/rgf. This is rgf_python error.

    Process finished with exit code 1

    opened by tianke0711 34
  • ModuleNotFoundError: No module named 'rgf.sklearn'; 'rgf' is not a package

    ModuleNotFoundError: No module named 'rgf.sklearn'; 'rgf' is not a package

    For bugs and unexpected issues, please provide the following information, so that we could reproduce them on our system.

    Environment Info

    Operating System: MacOS Sierra 10.12 | Ubuntu 16.04.3 LTS

    Python version: 3.6.1

    rgf_python version: HEAD (pulled from github)

    Whether test.py is passed or not: FAILED (errors=24)

    Error Message

    ModuleNotFoundError: No module named 'rgf.sklearn'; 'rgf' is not a package

    Reproducible Example

    from rgf.sklearn import RGFClassifier

    opened by vsedelnik 30
  • suggestion to integrate the R wrapper in the repository

    suggestion to integrate the R wrapper in the repository

    This issue is related with a previous one. A month ago I wrapped rgf_python using the reticulate package in R. It can be installed on Linux, and somehow cumbersome on Macintosh and Windows (on Windows currently it works only from the command prompt). I opened the issue as suggested by @fukatani

    opened by mlampros 20
  • Model learning result is not found in C:\Users\hp\temp\rgf. This is rgf_python error.

    Model learning result is not found in C:\Users\hp\temp\rgf. This is rgf_python error.

    Hello,

    i have read the previous thread on the same post, but it does not seem to solve my problem, because the previous case had string included in dataset and all i have got are all numbers. Could you please let me know what could be the problem??

    Much appreciated !

    skf = StratifiedKFold(n_splits = kfold, random_state=1)
    for i, (train_index, test_index) in enumerate(skf.split(X, y)):
        X_train, X_eval = X[train_index], X[test_index]
        y_train, y_eval = y[train_index], y[test_index]
       
        rgf_model = RGFClassifier(max_leaf=400,
                        algorithm="RGF_Sib",
                        test_interval=100,
                        verbose=True).fit( X_train, y_train)
        pred = rgf_model.predict_proba(X_eval)[:,1]
        print( "Gini = ", eval_gini(y_eval, pred) )
    

    and

    ---------------------------------------------------------------------------
    Exception                                 Traceback (most recent call last)
    <ipython-input-17-b27ba3506d06> in <module>()
         12                     test_interval=100,
         13                     verbose=True).fit( X_train, y_train)
    ---> 14     pred = rgf_model.predict_proba(X_eval)[:,1]
         15     print( "Gini = ", eval_gini(y_eval, pred) )
    
    C:\Anaconda3\lib\site-packages\rgf\sklearn.py in predict_proba(self, X)
        644                              % (self._n_features, n_features))
        645         if self._n_classes == 2:
    --> 646             y = self._estimators[0].predict_proba(X)
        647             y = _sigmoid(y)
        648             y = np.c_[y, 1 - y]
    
    C:\Anaconda3\lib\site-packages\rgf\sklearn.py in predict_proba(self, X)
        796         if not model_files:
        797             raise Exception('Model learning result is not found in {0}. '
    --> 798                             'This is rgf_python error.'.format(_TEMP_PATH))
        799         latest_model_loc = sorted(model_files, reverse=True)[0]
        800 
    
    Exception: Model learning result is not found in C:\Users\hp\temp\rgf. This is rgf_python error.
    
    
    opened by mike-m123 20
  • migrate from Appveyor to GitHub Actions

    migrate from Appveyor to GitHub Actions

    Fixed #122. Appveyor suggests only 1 parallel job at free tier, GitHub Actions - 20.

    Should be considered as a continuation of #328. Same changes as for *nix OSes: latest R version; stop producing 32bit artifacts.

    opened by StrikerRUS 16
  • New release

    New release

    I suppose it's time to release a new version with the support of warm start.

    @fukatani Please release new Python version, and then @mlampros please upload to CRAN new R version.

    opened by StrikerRUS 16
  • updated wheels building

    updated wheels building

    @fukatani Please attach Linux i686 executable file to GitHub release - I've just tested replacing files into wheels and it works locally, so should work on Travis too! :-)

    Refer to https://github.com/fukatani/rgf_python/issues/81#issuecomment-348662123.

    opened by StrikerRUS 15
  • More Travis tests

    More Travis tests

    Hi @fukatani ! Can you add more platforms (Windows, MacOS) to Travis? I don't know how, but it's possible 😄 : image [Screenshot from xgboost repo] Maybe it can help: https://github.com/dmlc/xgboost/blob/master/.travis.yml

    If there is a limitation to number of tests, maybe it's better to split Python version tests between platforms: Windows + 2.7, Linux + 3.4, MacOS + 3.5 (I think you understand me).

    opened by StrikerRUS 15
  • Cannot import name 'RGFClassifier'

    Cannot import name 'RGFClassifier'

    I am having the above error. I have made rgf1.2 and have tested using rgf1.2's own perl test script. This works. I have installed rgf_python and run the python setup as specified. I have changed the two folder locations to rgf1.2..\rgf executable and a temp folder that exist.

    In python when I try to import I get the error Cannot import name 'RGFClassifier'. I tried to run the exact code in the test.py script provided in with rgf_python and this same error occurs.

    Strangely, I have /usr/local/lib/python3.5/dist-packages/rgf_sklearn-0.0.0-py3.5.egg/rgf in my path when I do run

    import sys
    sys.path
    

    in python. I also in /usr/local/lib/python3.5/dist-packages I only have the rfg-sklearn-0.0.0-py3.5.egg and no rgf-sklearn as I would expect as the following appeared towards the end of the setup.py,

    Extracting rgf_sklearn-0.0.0-py3.5.egg to /usr/local/lib/python3.5/dist-packages
    Adding rgf-sklearn 0.0.0 to easy-install.pth file
    
    opened by JoshuaC3 15
  • [rgf_python] add warm-start

    [rgf_python] add warm-start

    Fixed #184.

    This PR adds the support of warm-start in RGF estimators, save_model() method which is needed to obtain binary model file and for further passing in init_model argument.

    Also, this PR adds tests with analysis of exception message (as I promised in https://github.com/RGF-team/rgf/pull/258#issuecomment-439685042).

    opened by StrikerRUS 14
  • Running RGF from R cmd

    Running RGF from R cmd

    For bugs and unexpected issues, please provide the following information, so that we could reproduce them on our system.

    Environment Info

    Operating System: Windows 10

    RGF/FastRGF/rgf_python version: 3.5.0-9

    Python version (for rgf_python errors): 3.5.0-9

    Error Message

    image

    image

    Reproducible Example

    Error when running RGF from R console as shown in the pic. Installation of RGF should be working fine as shown in the pic. RGF was installed via devtools.

    help wanted 
    opened by similang 2
  • Python cant find executables

    Python cant find executables

    Hi there

    I'm trying to install rgf/fastrgf and use the python wrapper to launch the executables.

    I've installed using pip install rgf_python

    However when i import the rgf module i get a user warning

    UserWarning: Cannot find FastRGF executable files. FastRGF estimators will be unavailable for usage.
      warnings.warn("Cannot find FastRGF executable files. FastRGF estimators will be unavailable for usage.")
    

    To fix this issue i've compiled the rgf and fastrgf binaries* and added them to my $PATH variable (confirmed in bash that they are in the PATH) however i still get the same error. I've looked a bit into the rgf/utils get_paths and is_fastrgf_executable functions however i'm not completely sure why it fails?

    *binaries: i was not sure which binaries are needed so i've added the following rgf, forest_predict, forest_train, discretized_trainer, discretized_gendata, auc

    System Python: conda 3.6.1 OS: ubuntu 16.04

    opened by casperkaae 29
  • dump RGF and FastRGF to the JSON file

    dump RGF and FastRGF to the JSON file

    Initial support for dumping the RGF model is already implemented in #161. At present it's possible to print the model to the console. But it's good idea to bring the possibility of dumping the model to the file (e.g. JSON).

    @StrikerRUS:

    Really like new features introduced in this PR. But please think about "real dump" of a model. I suppose it'll be more useful than just printing to the console.

    @fukatani:

    For example dump in JSON format like lightGBM. It's convenient and we may support it in the future, but we should do it with another PR.

    enhancement 
    opened by StrikerRUS 6
  • Support f_ratio?

    Support f_ratio?

    I found not documented parameter f_ratio in RGF. This corresponding to LightGBM feature_fraction and XGB colsample_bytree.

    I tried these parameter with boston regression example. In small max_leaf(300), f_ratio=0.9 improves score to 11.0 from 11.8, but in many max_leaf(5000), f_ratio=0.95 degrared score to 10.34 from 10.19810.

    After all, is there no value to use f_ratio < 1.0?

    opened by fukatani 10
  • [FastRGF] FastRGF doesn't work for small sample and need to fix integration test for FastRGF

    [FastRGF] FastRGF doesn't work for small sample and need to fix integration test for FastRGF

    #Now, sklearn integration tests for FastRGFClassifier and FastRGFClassifier.

    FastRGF doesn't work well for small samples, that is reason for test failed. I doubt inside Fast RGF executable inside. I inspect Fast RGF by debugger, discretization boundaries are invalid.

    At least we should raise understandable error from RGF python if discretization failed.

    bug 
    opened by fukatani 18
Releases(3.12.0)
Owner
RGF-team
RGF-team
MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving.

MWPToolkit is a PyTorch-based toolkit for Math Word Problem (MWP) solving. It is a comprehensive framework for research purpose that integrates popular MWP benchmark datasets and typical deep learnin

119 Jan 04, 2023
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022