Implementation of Analyzing and Improving the Image Quality of StyleGAN (StyleGAN 2) in PyTorch

Overview

StyleGAN 2 in PyTorch

Implementation of Analyzing and Improving the Image Quality of StyleGAN (https://arxiv.org/abs/1912.04958) in PyTorch

Notice

I have tried to match official implementation as close as possible, but maybe there are some details I missed. So please use this implementation with care.

Requirements

I have tested on:

  • PyTorch 1.3.1
  • CUDA 10.1/10.2

Usage

First create lmdb datasets:

python prepare_data.py --out LMDB_PATH --n_worker N_WORKER --size SIZE1,SIZE2,SIZE3,... DATASET_PATH

This will convert images to jpeg and pre-resizes it. This implementation does not use progressive growing, but you can create multiple resolution datasets using size arguments with comma separated lists, for the cases that you want to try another resolutions later.

Then you can train model in distributed settings

python -m torch.distributed.launch --nproc_per_node=N_GPU --master_port=PORT train.py --batch BATCH_SIZE LMDB_PATH

train.py supports Weights & Biases logging. If you want to use it, add --wandb arguments to the script.

SWAGAN

This implementation experimentally supports SWAGAN: A Style-based Wavelet-driven Generative Model (https://arxiv.org/abs/2102.06108). You can train SWAGAN by using

python -m torch.distributed.launch --nproc_per_node=N_GPU --master_port=PORT train.py --arch swagan --batch BATCH_SIZE LMDB_PATH

As noted in the paper, SWAGAN trains much faster. (About ~2x at 256px.)

Convert weight from official checkpoints

You need to clone official repositories, (https://github.com/NVlabs/stylegan2) as it is requires for load official checkpoints.

For example, if you cloned repositories in ~/stylegan2 and downloaded stylegan2-ffhq-config-f.pkl, You can convert it like this:

python convert_weight.py --repo ~/stylegan2 stylegan2-ffhq-config-f.pkl

This will create converted stylegan2-ffhq-config-f.pt file.

Generate samples

python generate.py --sample N_FACES --pics N_PICS --ckpt PATH_CHECKPOINT

You should change your size (--size 256 for example) if you train with another dimension.

Project images to latent spaces

python projector.py --ckpt [CHECKPOINT] --size [GENERATOR_OUTPUT_SIZE] FILE1 FILE2 ...

Closed-Form Factorization (https://arxiv.org/abs/2007.06600)

You can use closed_form_factorization.py and apply_factor.py to discover meaningful latent semantic factor or directions in unsupervised manner.

First, you need to extract eigenvectors of weight matrices using closed_form_factorization.py

python closed_form_factorization.py [CHECKPOINT]

This will create factor file that contains eigenvectors. (Default: factor.pt) And you can use apply_factor.py to test the meaning of extracted directions

python apply_factor.py -i [INDEX_OF_EIGENVECTOR] -d [DEGREE_OF_MOVE] -n [NUMBER_OF_SAMPLES] --ckpt [CHECKPOINT] [FACTOR_FILE]

For example,

python apply_factor.py -i 19 -d 5 -n 10 --ckpt [CHECKPOINT] factor.pt

Will generate 10 random samples, and samples generated from latents that moved along 19th eigenvector with size/degree +-5.

Sample of closed form factorization

Pretrained Checkpoints

Link

I have trained the 256px model on FFHQ 550k iterations. I got FID about 4.5. Maybe data preprocessing, resolution, training loop could made this difference, but currently I don't know the exact reason of FID differences.

Samples

Sample with truncation

Sample from FFHQ. At 110,000 iterations. (trained on 3.52M images)

MetFaces sample with non-leaking augmentations

Sample from MetFaces with Non-leaking augmentations. At 150,000 iterations. (trained on 4.8M images)

Samples from converted weights

Sample from FFHQ

Sample from FFHQ (1024px)

Sample from LSUN Church

Sample from LSUN Church (256px)

License

Model details and custom CUDA kernel codes are from official repostiories: https://github.com/NVlabs/stylegan2

Codes for Learned Perceptual Image Patch Similarity, LPIPS came from https://github.com/richzhang/PerceptualSimilarity

To match FID scores more closely to tensorflow official implementations, I have used FID Inception V3 implementations in https://github.com/mseitzer/pytorch-fid

Owner
Kim Seonghyeon
no side-effects
Kim Seonghyeon
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Andrew Zammit Mangion 1 Nov 08, 2021
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning plugins for distributed training using the Ray distributed compu

167 Jan 02, 2023
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL)

Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL) A preprint version of our paper: Link here This is a samp

Di Zhuang 3 Jan 08, 2023
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022