Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Overview

Introduction

This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including:

  • calculating metrics;
  • extracting speaker/spoofing embeddings from pre-trained models;
  • training/evaluating Baseline2 in the evaluation plan.

More information can be found in the webpage and the evaluation plan

Prerequisites

Load ECAPA-TDNN & AASIST repositories

git submodule init
git submodule update

Install requirements

pip install -r requirements.txt

Data preparation

The ASVspoof2019 LA dataset [1] can be downloaded using the scipt in AASIST [2] repository

python ./aasist/download_dataset.py

Speaker & spoofing embedding extraction

Speaker embeddings and spoofing embeddings can be extracted using below script. Extracted embeddings will be saved in ./embeddings.

  • Speaker embeddings are extracted using the ECAPA-TDNN [3].
  • Spoofing embeddings are extracted using the AASIST [2].
  • We also prepared extracted embeddings.
    • To use prepared emebddings, git-lfs is required. Please refer to https://git-lfs.github.com for further instruction. After installing git-lfs use following command to download the embeddings.
      git-lfs install
      git-lfs pull
      
python save_embeddings.py

Baseline 2 Training

Run below script to train Baseline2 in the evaluation plan.

  • It will reproduce Baseline2 described in the Evaluation plan.
python main.py --config ./configs/baseline2.conf

Developing own models

  • Currently adding...

Adding custom DNN architecture

  1. create new file under ./models/.
  2. create a new configuration file under ./configs
  3. in the new configuration, modify model_arch and add required arguments in model_config.
  4. run python main.py --config {USER_CONFIG_FILE}

Using only metrics

Use get_all_EERs in metrics.py to calculate all three EERs.

  • prediction scores and keys should be passed on using
    • protocols/ASVspoof2019.LA.asv.dev.gi.trl.txt or
    • protocols/ASVspoof2019.LA.asv.eval.gi.trl.txt

References

[1] ASVspoof 2019: A large-scale public database of synthesized, converted and replayed speech

@article{wang2020asvspoof,
  title={ASVspoof 2019: A large-scale public database of synthesized, converted and replayed speech},
  author={Wang, Xin and Yamagishi, Junichi and Todisco, Massimiliano and Delgado, H{\'e}ctor and Nautsch, Andreas and Evans, Nicholas and Sahidullah, Md and Vestman, Ville and Kinnunen, Tomi and Lee, Kong Aik and others},
  journal={Computer Speech \& Language},
  volume={64},
  pages={101114},
  year={2020},
  publisher={Elsevier}
}

[2] AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks

@inproceedings{Jung2022AASIST,
  author={Jung, Jee-weon and Heo, Hee-Soo and Tak, Hemlata and Shim, Hye-jin and Chung, Joon Son and Lee, Bong-Jin and Yu, Ha-Jin and Evans, Nicholas},
  booktitle={Proc. ICASSP}, 
  title={AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks}, 
  year={2022}

[3] ECAPA-TDNN: Emphasized Channel Attention, propagation and aggregation in TDNN based speaker verification

@inproceedings{desplanques2020ecapa,
  title={{ECAPA-TDNN: Emphasized Channel Attention, propagation and aggregation in TDNN based speaker verification}},
  author={Desplanques, Brecht and Thienpondt, Jenthe and Demuynck, Kris},
  booktitle={Proc. Interspeech 2020},
  pages={3830--3834},
  year={2020}
}
You might also like...
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Using LSTM to detect spoofing attacks in an Air-Ground network
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Flexible-Modal Face Anti-Spoofing: A Benchmark

Flexible-Modal FAS This is the official repository of "Flexible-Modal Face Anti-

Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

Codes for ACL-IJCNLP 2021 Paper
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

Pocsploit is a lightweight, flexible and novel open source poc verification framework
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

Comments
  • About the extracted embeddings.

    About the extracted embeddings.

    When we installed the git-lfs and step to pull the embeddings data, an error like:

    batch response: This repository is over its data quota. Account responsible for LFS bandwidth should purchase more data packs to restore access.
    error: failed to fetch some objects from 'https://github.com/sasv-challenge/SASVC2022_Baseline.git/info/lfs
    

    was appeared.

    What should I do? How can I download the embeddings data?

    opened by ikou-austin 3
  • Reproducing baseline1

    Reproducing baseline1

    Thanks for providing the code for pre-trained models and baseline2. I am reproducing baseline1 based on your description in the evaluation plan, but I got very different results on the development set. I am also curious why the SPF-EER on the development set is much worse than that on the evaluation set in your results. Could you please provide the code for reproducing your baseline1 result? Thank you so much!

    opened by yzyouzhang 3
  • omegaconf.errors.ConfigAttributeError: Missing key

    omegaconf.errors.ConfigAttributeError: Missing key

    I encounter the following error when I run main.py with the Baseline2 configuration.

    omegaconf.errors.ConfigAttributeError: Missing key

    There are in total three keys missing. min_req_mem gradient_clip reload_every_n_epoch

    I fixed these missing keys one by one by setting them to 0 or None. I am curious what are the default values for these. Thank you very much.

    opened by yzyouzhang 3
  • speaker_loss.weight is not in the model.

    speaker_loss.weight is not in the model.

    Thanks for your repo. I have successfully replicated the baseline2 performance. I encounter the following messages when I run python save_embeddings.py. It did not crash the program but I wonder where is the second line printed from since I did not find it. I am also not sure if it will cause potential issues.

    Device: cuda speaker_loss.weight is not in the model. Getting embedgins from set trn...

    Thanks.

    opened by yzyouzhang 1
Releases(v0.0.2)
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021