The VeriNet toolkit for verification of neural networks

Related tags

Deep LearningVeriNet
Overview

VeriNet

The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks. VeriNet won second place overall and was the most performing among toolkits not using GPUs in the 2nd international verification of neural networks competition. VeriNet is devloped at the Verification of Autonomous Systems (VAS) group, Imperial College London.

Relevant Publications.

VeriNet is developed as part of the following publications:

Efficient Neural Network Verification via Adaptive Refinement and Adversarial Search

DEEPSPLIT: An Efficient Splitting Method for Neural Network Verification via Indirect Effect Analysis

This version of VeriNet subsumes the VeriNet toolkit publised in the first paper and the DeepSplit toolkit published in the second paper.

Installation:

All dependencies can be installed via Pipenv.

VeriNet depends on the Xpress solver, which can solve smaller problems without a license; however, larger problems (networks with more than approximately 5000 nodes) require a license. Free academic licenses can be obtained at: https://content.fico.com/l/517101/2018-06-10/3fpbf

We recommend installing the developer dependencies for some extra optimisations during the loading of onnx models. These can be installed by running pipenv with the --dev option: $pipenv install --dev.

Usage:

Models:

VeriNet supports loading models in onnx format or custom models created with the VeriNetNN class, a subclass of torch.nn.module.

Loading onnx models:

Onnx models can be loaded as follows:

from verinet.parsers.onnx_parser import ONNXParser

onnx_parser = ONNXParser(onnx_model_path, input_names=("x",), transpose_fc_weights=False, use_64bit=False)
model = onnx_parser.to_pytorch()
model.eval()

The first argument is the path of the onnx file; input_names should be a tuple containing the input-variable name as stored in the onnx model; if transpose_fc_weights is true the weight matrices of fully-connected layers are transposed; if use_64bit is true the parameters of the model are stored as torch.DoubleTensors instead of torch.FloatTensors.

Custom models:

The following is a simple example of a VeriNetNN model with two inputs, one FC layer, one ReLU layer and 2 outputs:

import torch.nn as nn
from verinet.neural_networks.verinet_nn import VeriNetNN, VeriNetNNNode

nodes = [VeriNetNNNode(idx=0, op=nn.Identity(), connections_from=None, connections_to=[1]),
         VeriNetNNNode(idx=1, op=nn.nn.Linear(2, 2)(), connections_from=[0], connections_to=[2]),
         VeriNetNNNode(idx=2, op=nn.ReLU(), connections_from=[1], connections_to=[3]),
         VeriNetNNNode(idx=3, op=nn.Identity(), connections_from=[2], connections_to=None)]

model = VeriNetNN(nodes)

VeriNetNN takes as input a list of nodes (note that 'nodes' here do not correspond to neurons, each node may have multiple neurons) where each node has the following parameters:

  • idx: A unique node-index sorted topologically wrt the connections.
  • op: The operation performed by the node, all operations defined in verinet/neural_networks/custom_layers.py as well as nn.ReLU, nn.Sigmoid, nn.Tanh, nn.Linear, nn.Conv2d, nn.AvgPool2d, nn.Identity, nn.Reshape, nn.Transpose and nn.Flatten are supported.
  • connections_from: A list of which nodes' outputs are used as input in this node. Note that more than one output in a single node (residual connections) is only support for nodes with the AddDynamic op as defined in custom_layers.py.
  • connections_to: A list of which nodes' input depend on this node's output corresponding to connections_from.

The first and last layer should be nn.Identity nodes. BatchNorm2d and MaxPool2d operations can be implemented by saving the model to onnx and reloading as the onnx parser automatically attempts to convert these to equivalent Conv2d and ReLU layers.

Verification Objectives:

VeriNet supports verification objectives in the VNN-COMP'21 vnnlib format and custom objectives.

Vnnlib:

VeriNet supports vnnlib files formated as described in the following discussion: https://github.com/stanleybak/vnncomp2021/issues/2. The files can be loaded as follows:

from verinet.parsers.vnnlib_parser import VNNLIBParser

vnnlib_parser = VNNLIBParser(vnnlib_path)
objectives = vnnlib_parser.get_objectives_from_vnnlib(model, input_shape)

The vnnlib_path parameter should be the path of the vnnlib file, model is the VeriNetNN model as discussed above while the input shape is a tuple describing the shape of the models input without batch-dimension (e.g. (784, ) for flattened MNIST (1, 28, 28) for MNIST images and (3, 32, 32) for CIFAR-10 Images).

Custom objectives:

The following is an example of how a custom verification objective for classification problems can be encoded (correct output larger than all other outputs):

from verinet.verification.objective import Objective

objective = Objective(input_bounds, output_size=10, model=model)
out_vars = objective.output_vars
for j in range(objective.output_size):
    if j != correct_output:
        # noinspection PyTypeChecker
        objective.add_constraints(out_vars[j] <= out_vars[correct_output])

Here input bounds is an array of shape (*network_input_shape, 2) where network_input_shape is the input shape of the network (withut batch dimension) and the last dimension contains the lower bounds at position 0 and upper bounds at position 1.

Note that the verification objective encodes what it means for the network to be Safe/Robust. And-type constraints can be encoded by calling objective.add_constraints for each and-clause, while or-type constraints can be encoded with '|' (e.g. (out_vars[0] < 1) | (out_vars[0] < out_vars[1])).

Verification:

After defining the model and objective as described above, verification is performed by using the VeriNet class as follows:

from verinet.verification.verinet import VeriNet

solver = VeriNet(use_gpu=True, max_procs=None)
status = solver.verify(objective=objective, timeout=3600)

The parameters of VeriNet, use_gpu and max_procs, determines whether to use the GPU and the maximum number of processes (max_procs = None automatically determines the number of processes depending on the cores available).

The parameters in solver.verify correspond to the objective as discussed above and the timeout in seconds. Note that is recommended to keep solver alive instead of creating a new object every call to reduce overhead.

After each verification run the number of branches explored and maximum depth reached are stored in solver.branches_explored and solver.max_depth, respectively. If the objective is determined to be unsafe/not-robust, a counter example is stored in solver.counter_example.

At the end of each run, status will be either Status.Safe, Status.Unsafe, Status.Undecided or Status.Underflow. Safe means that the property is robust, Unsafe that a counter example was found, undecided that the solver timed-out and underflow that an error was encountered, most likely due to floating point precision.

Advanced usage:

Environment variables:

The .env file contains some environment variables that are automatically enabled if pipenv is used, if pipenv is not used make sure to export these variables.

Config file:

The config file in verinet/util/config.py contains several advanced settings. Of particular interest are the following:

  • PRECISION: (32 or 64) The floating point precision used in SIP. Note that this does not affect the precision of the model itself, which can be adjusted in the ONNXParser as discussed above.
  • MAX_ESTIMATED_MEM_USAGE: The maximum estimated memory usage acceptable in SIP. Can be reduced to reduce the memory requirements at the cost of computational performance.
  • USE_SSIP and STORE_SSIP_BOUNDS: Performs a pre-processing using a lower cost SIP-variant. Should be enabled if the input-dimensionality is significantly smaller than the size of the network (e.g. less than 50 input nodes with more than 10k Relu nodes).

Authors:

Patrick Henriksen: [email protected]
Alessio Lomuscio.

Owner
Verification of Autonomous Systems Research Group; Department of Computing; Imperial College London; London UK
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University ๐Ÿ“– Table of

Hosein Damavandi 6 Aug 22, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 ๋ณธ repo ๋Š” mAy-I Inc. ํŒ€์œผ๋กœ ์ฐธ๊ฐ€ํ•œ 2021 ์ธ๊ณต์ง€๋Šฅ ์˜จ๋ผ์ธ ๊ฒฝ์ง„๋Œ€ํšŒ ์ค‘ [์ด๋ฏธ์ง€] ์šด์ „ ์‚ฌ๊ณ  ์˜ˆ๋ฐฉ์„ ์œ„ํ•œ ์šด์ „์ž ๋ถ€์ฃผ์˜ ํ–‰๋™ ๊ฒ€์ถœ ๋ชจ๋ธ] ํƒœ์Šคํฌ ์ˆ˜ํ–‰์„ ์œ„ํ•œ ๋ ˆํฌ์ง€ํ† ๋ฆฌ์ž…๋‹ˆ๋‹ค. mAy-I ๋Š” ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณดํ†ต์‹ ๋ถ€๊ฐ€ ์ฃผ์ตœํ•˜

Junhyuk Park 9 Dec 01, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
yolov5็›ฎๆ ‡ๆฃ€ๆต‹ๆจกๅž‹็š„็Ÿฅ่ฏ†่’ธ้ฆ๏ผˆๅŸบไบŽๅ“ๅบ”็š„่’ธ้ฆ๏ผ‰

ไปฃ็ ๅœฐๅ€๏ผš https://github.com/Sharpiless/yolov5-knowledge-distillation ๆ•™ๅธˆๆจกๅž‹๏ผš python train.py --weights weights/yolov5m.pt \ --cfg models/yolov5m.ya

52 Dec 04, 2022