Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Overview

Non-attentive Tacotron - PyTorch Implementation

This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is some minor modifications to the original paper. We use grapheme directly, not phoneme. For that reason, we use grapheme based forced aligner by using Wav2vec 2.0. We also separate special characters from basic characters, and each is used for embedding respectively. This project is based on NVIDIA tacotron2. Feel free to use this code.

Install

  • Before you start the code, you have to check your python>=3.6, torch>=1.10.1, torchaudio>=0.10.0 version.
  • Torchaudio version is strongly restrict because of recent modification.
  • We support docker image file that we used for this implementation.
  • or You can install a package through the command below:
## download the git repository
git clone https://github.com/JoungheeKim/Non-Attentive-Tacotron.git
cd Non-Attentive-Tacotron

## install python dependency
pip install -r requirements.txt

## install this implementation locally for further development
python setup.py develop

Quickstart

  • Install a package.
  • Download Pretrained tacotron models through links below:
    • LJSpeech-1.1 (English, single-female speaker)
      • trained for 40,000 steps with 32 batch size, 8 accumulation) [LINK]
    • KSS Dataset (Korean, single-female speaker)
      • trained for 40,000 steps with 32 batch size, 8 accumulation) [LINK]
      • trained for 110,000 steps with 32 batch size, 8 accumulation) [LINK]
  • Download Pretrained VocGAN vocoder corresponding tacotron model in this [LINK]
  • Run a python code below:
## import library
from tacotron import get_vocgan
from tacotron.model import NonAttentiveTacotron
from tacotron.tokenizer import BaseTokenizer
import torch

## set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

## set pretrained model path
generator_path = '???'
tacotron_path = '???'

## load generator model
generator = get_vocgan(generator_path)
generator.eval()

## load tacotron model
tacotron = NonAttentiveTacotron.from_pretrained(tacotron_path)
tacotron.eval()

## load tokenizer
tokenizer = BaseTokenizer.from_pretrained(tacotron_path)

## Inference
text = 'This is a non attentive tacotron.'
encoded_text = tokenizer.encode(text)
encoded_torch_text = {key: torch.tensor(item, dtype=torch.long).unsqueeze(0).to(device) for key, item in encoded_text.items()}

with torch.no_grad():
    ## make log mel-spectrogram
    tacotron_output = tacotron.inference(**encoded_torch_text)
    
    ## make audio
    audio = generator.generate_audio(**tacotron_output)

Preprocess & Train

1. Download Dataset

2. Build Forced Aligned Information.

  • Non-Attentive Tacotron is duration based model.
  • So, alignment information between grapheme and audio is essential.
  • We make alignment information using Wav2vec 2.0 released from fairseq.
  • We also support pretrained wav2vec 2.0 model for Korean in this [LINK].
  • The Korean Wav2vec 2.0 model is trained on aihub korean dialog dataset to generate grapheme based prediction described in K-Wav2vec 2.0.
  • The English model is automatically downloaded when you run the code.
  • Run the command below:
## 1. LJSpeech example
## set your data path and audio path(examples are below:)
AUDIO_PATH=/code/gitRepo/data/LJSpeech-1.1/wavs
SCRIPT_PATH=/code/gitRepo/data/LJSpeech-1.1/metadata.csv

## ljspeech forced aligner
## check config options in [configs/preprocess_ljspeech.yaml]
python build_aligned_info.py \
    base.audio_path=${AUDIO_PATH} \
    base.script_path=${SCRIPT_PATH} \
    --config-name preprocess_ljspeech
    
    
## 2. KSS Dataset 
## set your data path and audio path(examples are below:)
AUDIO_PATH=/code/gitRepo/data/kss
SCRIPT_PATH=/code/gitRepo/data/kss/transcript.v.1.4.txt
PRETRAINED_WAV2VEC=korean_wav2vec2

## kss forced aligner
## check config options in [configs/preprocess_kss.yaml]
python build_aligned_info.py \
    base.audio_path=${AUDIO_PATH} \
    base.script_path=${SCRIPT_PATH} \
    base.pretrained_model=${PRETRAINED_WAV2VEC} \
    --config-name preprocess_kss

3. Train & Evaluate

  • It is recommeded to download the pre-trained vocoder before training the non-attentive tacotron model to evaluate the model performance in training phrase.
  • You can download pre-trained VocGAN in this [LINK].
  • We only experiment with our codes on a one gpu such as 2080ti or TITAN RTX.
  • The robotic sounds are gone when I use batch size 32 with 8 accumulation corresponding to 256 batch size.
  • Run the command below:
## 1. LJSpeech example
## set your data generator path and save path(examples are below:)
GENERATOR_PATH=checkpoints_g/ljspeech_29de09d_4000.pt
SAVE_PATH=results/ljspeech

## train ljspeech non-attentive tacotron
## check config options in [configs/train_ljspeech.yaml]
python train.py \
    base.generator_path=${GENERATOR_PATH} \
    base.save_path=${SAVE_PATH} \
    --config-name train_ljspeech
  
  
    
## 2. KSS Dataset   
## set your data generator path and save path(examples are below:)
GENERATOR_PATH=checkpoints_g/vocgan_kss_pretrained_model_epoch_4500.pt
SAVE_PATH=results/kss

## train kss non-attentive tacotron
## check config options in [configs/train_kss.yaml]
python train.py \
    base.generator_path=${GENERATOR_PATH} \
    base.save_path=${SAVE_PATH} \
    --config-name train_kss

Audio Examples

Language Text with Accent(bold) Audio Sample
Korean 이 타코트론은 잘 작동한다. Sample
Korean 타코트론은 잘 작동한다. Sample
Korean 타코트론은 잘 작동한다. Sample
Korean 이 타코트론은 작동한다. Sample

Forced Aligned Information Examples

ToDo

  • Sometimes get torch NAN errors.(help me)
  • Remove robotic sounds in synthetic audio.

References

Owner
Jounghee Kim
I am interested in NLP, Representation Learning, Speech Recognition, Speech Generation.
Jounghee Kim
🥈78th place in Riiid Answer Correctness Prediction competition

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

Jungwoo Park 10 Jul 14, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022