Latent Execution for Neural Program Synthesis

Overview

Latent Execution for Neural Program Synthesis

This repo provides the code to replicate the experiments in the paper

Xinyun Chen, Dawn Song, Yuandong Tian, Latent Execution for Neural Program Synthesis, in NeurIPS 2021.

Paper [arXiv] [NeurIPS]

Prerequisites

PyTorch

Dataset

Sample Usage

  1. To run our full latent program synthesizer (LaSynth):

python run.py --latent_execution --operation_predictor --decoder_self_attention

  1. To run our program synthesizer without partial program execution (NoPartialExecutor):

python run.py --latent_execution --operation_predictor --decoder_self_attention --no_partial_execution

  1. To run the RobustFill model:

python run.py

  1. To run the Property Signatures model:

python run.py --use_properties

Run experiments

In the following we list some important arguments for experiments:

  • --data_folder: path to the dataset.
  • --model_dir: path to the directory that stores the models.
  • --load_model: path to the pretrained model (optional).
  • --eval: adding this command will enable the evaluation mode; otherwise, the model will be trained by default.
  • --num_epochs: number of training epochs. The default value is 10, but usually 1 epoch is enough for a decent performance.
  • --log_interval LOG_INTERVAL: saving checkpoints every LOG_INTERVAL steps.
  • --latent_execution: Enable the model to learn the latent executor module.
  • --no_partial_execution: Enable the model to learn the latent executor module, but this module is not used by the program synthesizer, and only adds to the training loss.
  • --operation_predictor: Enable the model to learn the operation predictor module.
  • --use_properties: Run the Property Signatures baseline.
  • --iterative_retraining_prog_gen: Decode training programs for iterative retraining.

More details can be found in arguments.py.

Citation

If you use the code in this repo, please cite the following paper:

@inproceedings{chen2021latent,
  title={Latent Execution for Neural Program Synthesis},
  author={Chen, Xinyun and Song, Dawn and Tian, Yuandong},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}

License

This repo is CC-BY-NC licensed, as found in the LICENSE file.

References

[1] Devlin et al., RobustFill: Neural Program Learning under Noisy I/O, ICML 2017.

[2] Odena and Sutton, Learning to Represent Programs with Property Signatures, ICLR 2020.

[3] Chen et al., Execution-Guided Neural Program Synthesis, ICLR 2019.

Owner
Xinyun Chen
Ph.D. student, UC Berkeley.
Xinyun Chen
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022