PyTorch implementation of "Optimization Planning for 3D ConvNets"

Overview

Optimization-Planning-for-3D-ConvNets

Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets.

Authors: Zhaofan Qiu, Ting Yao, Chong-Wah Ngo, Tao Mei

Framework

1. Requirement

The provided codes have been tested with Python-3.9.5 & Pytorch-1.9.0 on four Tesla-V100s.

2. Project structure

├─ base_config             # Pre-set config file for each dataset
├─ dataset                 # Video lists (NOT provided) and code to load video data
├─ jpgs                    # Images for README
├─ layers                  # Custom network layers
├─ model                   # Network architectures
├─ record                  # Config file for each run
├─ utils                   # Basic functions
├─ extract_score_3d.py     # Main script to extract predicted score
├─ helpers.py              # Helper functions for main scripts
├─ merge_score.py          # Main script to merge scores from different clips
├─ train_3d.py             # Main script to launch a training using given strategy
├─ train_3d_op.py          # Main script to launch a searching of best strategy
└─ run.sh                  # Shell script for training-extracting-merging pipeline

3. Run the code

  1. Pre-process the target dataset and put the lists in to the dataset folder. Codes in dataset/video_dataset.py can load three video formats (raw video, jpeg frames and video LMDB) and can be simply modified to support the custom format.
  2. Make config file in the record folder. The config examples include op-*.yml for pre-searched strategy, kinetics-*.yml for simple strategy on Kinetics-400,
  3. Run run.sh for the training-extracting-merging pipeline or replace train_3d.py with train_3d_op.py for searching the optimal strategy.

4. TO DO

Add more explainations and examples.

5. Contact

Please feel free to email to Zhaofan Qiu if you have any question regarding the paper or any suggestions for further improvements.

6. Citation

If you find this code helpful, thanks for citing our work as

@inproceedings{qiu2021optimization,
title={Optimization Planning for 3D ConvNets},
author={Qiu, Zhaofan and Yao, Ting and Ngo, Chong-Wah and Mei, Tao},
booktitle={Proceedings of the 38th International Conference on Machine Learning (ICML)},
publisher={PMLR},
year={2021}
}

Please also pay attention to the citations of the included networks/algorithms.

Owner
Zhaofan Qiu
Ph.D. student in USTC&MSRA
Zhaofan Qiu
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022