The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Overview

Neural Deformation Graphs

Project Page | Paper | Video


Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction
Aljaž Božič, Pablo Palafox, Michael Zollhöfer, Justus Thies, Angela Dai, Matthias Nießner
CVPR 2021 (Oral Presentation)

This repository contains the code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Specifically, we implicitly model a deformation graph via a deep neural network and empose per-frame viewpoint consistency as well as inter-frame graph and surface consistency constraints in a self-supervised fashion.

That results in a differentiable construction of a deformation graph that is able to handle deformations present in the whole sequence.

Install all dependencies

  • Download the latest conda here.

  • To create a conda environment with all the required packages using conda run the following command:

conda env create -f resources/env.yml

The above command creates a conda environment with the name ndg.

  • Compile external dependencies inside external directory by executing:
conda activate ndg
./build_external.sh

The external dependencies are PyMarchingCubes, gaps and Eigen.

Generate data for visualization & training

In our experiments we use depth inputs from 4 camera views. These depth maps were captured with 4 Kinect Azure sensors. For quantitative evaluation we also used synthetic data, where 4 depth views were rendered from ground truth meshes. In both cases, screened Poisson reconstruction (implemented in MeshLab) was used to obtain meshes for data generation. An example sequence of meshes of a synthetic doozy sequence can be downloaded here.

To generate training data from these meshes, they need to be put into a directory out/meshes/doozy. Then the following code executes data generation, producing generated data samples in out/dataset/doozy:

./generate_data.sh

Visualize neural deformation graphs using pre-trained models

After data generation you can already check out the neural deformation graph estimation using a pre-trained model checkpoint. You need to place it into the out/models directory, and run visualization:

./viz.sh

Reconstruction visualization can take longer, if you want to check out graphs only, you can uncomment --viz_only_graph argument in viz.sh.

Within the Open3D viewer, you can navigate different settings using these keys:

  • N: toggle graph nodes and edges
  • G: toggle ground truth
  • D: show next
  • A: show previous
  • S: toggle smooth shading

Train a model from scratch

You can train a model from scratch using train_graph.sh and train_shape.sh scripts, in that order. The model checkpoints and tensorboard stats are going to be stored into out/experiments.

Optimize graph

To estimate a neural deformation graph from input observations, you need to specify the dataset to be used (inside out/dataset, should be generated before hand), and then training can be started using the following script:

./train_graph.sh

We ran all our experiments on NVidia 2080Ti GPU, for about 500k iterations. After the model has converged, you can visualize the optimized neural deformation graph using viz.sh script.

To check out convergence, you can visualize loss curves with tensorboard by running the following inside out/experiments directory:

tensorboard --logdir=.

Optimize shape

To optimize shape, you need to initialize the graph with a pre-trained graph model. That means that inside train_shape.sh you need to specify the graph_model_path, which should point to the converged checkpoint of the graph model (graph model usually converges at around 500k iterations). Multi-MLP model can then be optimized to reconstruct shape geometry by running:

./train_shape.sh

Similar to graph optimization also shape optimization converges in about 500k iterations.

Citation

If you find our work useful in your research, please consider citing:

@article{bozic2021neuraldeformationgraphs,
title={Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction},
author={Bo{\v{z}}i{\v{c}}, Alja{\v{z}} and Palafox, Pablo and Zollh{\"o}fer, Michael and Dai, Angela and Thies, Justus and Nie{\ss}ner, Matthias},
journal={CVPR},
year={2021}
}

Related work

Some other related works on non-rigid reconstruction by our group:

License

The code from this repository is released under the MIT license, except where otherwise stated (i.e., Eigen).

Owner
Aljaz Bozic
PhD Student at Visual Computing Group
Aljaz Bozic
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Neural RGB-D Surface Reconstruction Paper | Project Page | Video Neural RGB-D Surface Reconstruction Dejan Azinović, Ricardo Martin-Brualla, Dan B Gol

Dejan 406 Jan 04, 2023
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
reimpliment of DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation

DFANet This repo is an unofficial pytorch implementation of DFANet:Deep Feature Aggregation for Real-Time Semantic Segmentation log 2019.4.16 After 48

shen hui xiang 248 Oct 21, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022