Test-Time Personalization with a Transformer for Human Pose Estimation, NeurIPS 2021

Related tags

Deep LearningTTP
Overview

Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation

This is an official implementation of the NeurIPS 2021 paper: Transforming Self-Supervision in Test Time for Personalizing Human Pose Estimation. More details can be found at our project website.

teaser

Preparation

  1. Install dependencies
pip install -r requirements.txt
  1. Make libs

    cd ${PROJECT_ROOT}/lib
    make
  2. Place Penn Action data in data directory. (Instructions on Human3.6M and BBC Pose are coming soon.)

    Your directory tree should look like this:

    ${PROJECT_ROOT}
    └── data
        └── Penn_Action
            ├── frames
            ├── labels
            ├── tools
            └── README
    
  3. Download pretrained model of ResNet-18 and ResNet-50 and place them in models/pytorch/imagenet.

    Your directory tree should look like this:

    ${PROJECT_ROOT}
    └── models
        └── pytorch
            └── imagenet
                ├── resnet18-5c106cde.pth
                └── resnet50-19c8e357.pth
    

Training and Test-time Personalization

Training

python tools/train_joint.py \
   --cfg experiments/penn/joint_res50_128x128_1e-3_comb_attn_tf1_4head.yaml

Run Test-Time Personalization (online)

python tools/test_time_training.py \
   --cfg experiments/penn/ttp_res50_128x128_lr1e-4_online_downsample1_comb_attn_tf1_4head.yaml \
   TEST.MODEL_FILE ${MODEL_FILE}

Run Test-Time Personalization (offline)

python tools/test_time_training.py \
   --cfg experiments/penn/ttp_res50_128x128_lr1e-4_offline_downsample1_comb_attn_tf1_4head.yaml \
   TEST.MODEL_FILE ${MODEL_FILE}

Baseline Model

To train the baseline model for comparison

python tools/train.py --cfg experiments/penn/res50_128x128.yaml

Result

Configs, results and model checkpoints on Human3.6M and BBC Pose are coming soon.

Method TTP Scenario Penn Action Checkpoint
Baseline - 85.233 Google Drive
Ours before TTP 86.283 Google Drive
Ours online 87.660 -
Ours offline 88.633 -

Acknowlegement

TTP is developed based on HRNet. We also incorperate some code from IMM.

Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022