Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Overview

Softlearning

Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is fairly thin and primarily optimized for our own development purposes. It utilizes the tf.keras modules for most of the model classes (e.g. policies and value functions). We use Ray for the experiment orchestration. Ray Tune and Autoscaler implement several neat features that enable us to seamlessly run the same experiment scripts that we use for local prototyping to launch large-scale experiments on any chosen cloud service (e.g. GCP or AWS), and intelligently parallelize and distribute training for effective resource allocation.

This implementation uses Tensorflow. For a PyTorch implementation of soft actor-critic, take a look at rlkit.

Getting Started

Prerequisites

The environment can be run either locally using conda or inside a docker container. For conda installation, you need to have Conda installed. For docker installation you will need to have Docker and Docker Compose installed. Also, most of our environments currently require a MuJoCo license.

Conda Installation

  1. Download and install MuJoCo 1.50 and 2.00 from the MuJoCo website. We assume that the MuJoCo files are extracted to the default location (~/.mujoco/mjpro150 and ~/.mujoco/mujoco200_{platform}). Unfortunately, gym and dm_control expect different paths for MuJoCo 2.00 installation, which is why you will need to have it installed both in ~/.mujoco/mujoco200_{platform} and ~/.mujoco/mujoco200. The easiest way is to create a symlink from ~/.mujoco/mujoco200_{plaftorm} -> ~/.mujoco/mujoco200 with: ln -s ~/.mujoco/mujoco200_{platform} ~/.mujoco/mujoco200.

  2. Copy your MuJoCo license key (mjkey.txt) to ~/.mujoco/mjkey.txt:

  3. Clone softlearning

git clone https://github.com/rail-berkeley/softlearning.git ${SOFTLEARNING_PATH}
  1. Create and activate conda environment, install softlearning to enable command line interface.
cd ${SOFTLEARNING_PATH}
conda env create -f environment.yml
conda activate softlearning
pip install -e ${SOFTLEARNING_PATH}

The environment should be ready to run. See examples section for examples of how to train and simulate the agents.

Finally, to deactivate and remove the conda environment:

conda deactivate
conda remove --name softlearning --all

Docker Installation

docker-compose

To build the image and run the container:

export MJKEY="$(cat ~/.mujoco/mjkey.txt)" \
    && docker-compose \
        -f ./docker/docker-compose.dev.cpu.yml \
        up \
        -d \
        --force-recreate

You can access the container with the typical Docker exec-command, i.e.

docker exec -it softlearning bash

See examples section for examples of how to train and simulate the agents.

Finally, to clean up the docker setup:

docker-compose \
    -f ./docker/docker-compose.dev.cpu.yml \
    down \
    --rmi all \
    --volumes

Examples

Training and simulating an agent

  1. To train the agent
softlearning run_example_local examples.development \
    --algorithm SAC \
    --universe gym \
    --domain HalfCheetah \
    --task v3 \
    --exp-name my-sac-experiment-1 \
    --checkpoint-frequency 1000  # Save the checkpoint to resume training later
  1. To simulate the resulting policy: First, find the absolute path that the checkpoint is saved to. By default (i.e. without specifying the log-dir argument to the previous script), the data is saved under ~/ray_results/<universe>/<domain>/<task>/<datatimestamp>-<exp-name>/<trial-id>/<checkpoint-id>. For example: ~/ray_results/gym/HalfCheetah/v3/2018-12-12T16-48-37-my-sac-experiment-1-0/mujoco-runner_0_seed=7585_2018-12-12_16-48-37xuadh9vd/checkpoint_1000/. The next command assumes that this path is found from ${SAC_CHECKPOINT_DIR} environment variable.
python -m examples.development.simulate_policy \
    ${SAC_CHECKPOINT_DIR} \
    --max-path-length 1000 \
    --num-rollouts 1 \
    --render-kwargs '{"mode": "human"}'

examples.development.main contains several different environments and there are more example scripts available in the /examples folder. For more information about the agents and configurations, run the scripts with --help flag: python ./examples/development/main.py --help

optional arguments:
  -h, --help            show this help message and exit
  --universe {robosuite,dm_control,gym}
  --domain DOMAIN
  --task TASK
  --checkpoint-replay-pool CHECKPOINT_REPLAY_POOL
                        Whether a checkpoint should also saved the replay
                        pool. If set, takes precedence over
                        variant['run_params']['checkpoint_replay_pool']. Note
                        that the replay pool is saved (and constructed) piece
                        by piece so that each experience is saved only once.
  --algorithm ALGORITHM
  --policy {gaussian}
  --exp-name EXP_NAME
  --mode MODE
  --run-eagerly RUN_EAGERLY
                        Whether to run tensorflow in eager mode.
  --local-dir LOCAL_DIR
                        Destination local folder to save training results.
  --confirm-remote [CONFIRM_REMOTE]
                        Whether or not to query yes/no on remote run.
  --video-save-frequency VIDEO_SAVE_FREQUENCY
                        Save frequency for videos.
  --cpus CPUS           Cpus to allocate to ray process. Passed to `ray.init`.
  --gpus GPUS           Gpus to allocate to ray process. Passed to `ray.init`.
  --resources RESOURCES
                        Resources to allocate to ray process. Passed to
                        `ray.init`.
  --include-webui INCLUDE_WEBUI
                        Boolean flag indicating whether to start theweb UI,
                        which is a Jupyter notebook. Passed to `ray.init`.
  --temp-dir TEMP_DIR   If provided, it will specify the root temporary
                        directory for the Ray process. Passed to `ray.init`.
  --resources-per-trial RESOURCES_PER_TRIAL
                        Resources to allocate for each trial. Passed to
                        `tune.run`.
  --trial-cpus TRIAL_CPUS
                        CPUs to allocate for each trial. Note: this is only
                        used for Ray's internal scheduling bookkeeping, and is
                        not an actual hard limit for CPUs. Passed to
                        `tune.run`.
  --trial-gpus TRIAL_GPUS
                        GPUs to allocate for each trial. Note: this is only
                        used for Ray's internal scheduling bookkeeping, and is
                        not an actual hard limit for GPUs. Passed to
                        `tune.run`.
  --trial-extra-cpus TRIAL_EXTRA_CPUS
                        Extra CPUs to reserve in case the trials need to
                        launch additional Ray actors that use CPUs.
  --trial-extra-gpus TRIAL_EXTRA_GPUS
                        Extra GPUs to reserve in case the trials need to
                        launch additional Ray actors that use GPUs.
  --num-samples NUM_SAMPLES
                        Number of times to repeat each trial. Passed to
                        `tune.run`.
  --upload-dir UPLOAD_DIR
                        Optional URI to sync training results to (e.g.
                        s3://<bucket> or gs://<bucket>). Passed to `tune.run`.
  --trial-name-template TRIAL_NAME_TEMPLATE
                        Optional string template for trial name. For example:
                        '{trial.trial_id}-seed={trial.config[run_params][seed]
                        }' Passed to `tune.run`.
  --checkpoint-frequency CHECKPOINT_FREQUENCY
                        How many training iterations between checkpoints. A
                        value of 0 (default) disables checkpointing. If set,
                        takes precedence over
                        variant['run_params']['checkpoint_frequency']. Passed
                        to `tune.run`.
  --checkpoint-at-end CHECKPOINT_AT_END
                        Whether to checkpoint at the end of the experiment. If
                        set, takes precedence over
                        variant['run_params']['checkpoint_at_end']. Passed to
                        `tune.run`.
  --max-failures MAX_FAILURES
                        Try to recover a trial from its last checkpoint at
                        least this many times. Only applies if checkpointing
                        is enabled. Passed to `tune.run`.
  --restore RESTORE     Path to checkpoint. Only makes sense to set if running
                        1 trial. Defaults to None. Passed to `tune.run`.
  --server-port SERVER_PORT
                        Port number for launching TuneServer. Passed to
                        `tune.run`.

Resume training from a saved checkpoint

This feature is currently broken!

In order to resume training from previous checkpoint, run the original example main-script, with an additional --restore flag. For example, the previous example can be resumed as follows:

softlearning run_example_local examples.development \
    --algorithm SAC \
    --universe gym \
    --domain HalfCheetah \
    --task v3 \
    --exp-name my-sac-experiment-1 \
    --checkpoint-frequency 1000 \
    --restore ${SAC_CHECKPOINT_PATH}

References

The algorithms are based on the following papers:

Soft Actor-Critic Algorithms and Applications.
Tuomas Haarnoja*, Aurick Zhou*, Kristian Hartikainen*, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. arXiv preprint, 2018.
paper | videos

Latent Space Policies for Hierarchical Reinforcement Learning.
Tuomas Haarnoja*, Kristian Hartikainen*, Pieter Abbeel, and Sergey Levine. International Conference on Machine Learning (ICML), 2018.
paper | videos

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.
Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. International Conference on Machine Learning (ICML), 2018.
paper | videos

Composable Deep Reinforcement Learning for Robotic Manipulation.
Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza Dalal, Pieter Abbeel, Sergey Levine. International Conference on Robotics and Automation (ICRA), 2018.
paper | videos

Reinforcement Learning with Deep Energy-Based Policies.
Tuomas Haarnoja*, Haoran Tang*, Pieter Abbeel, Sergey Levine. International Conference on Machine Learning (ICML), 2017.
paper | videos

If Softlearning helps you in your academic research, you are encouraged to cite our paper. Here is an example bibtex:

@techreport{haarnoja2018sacapps,
  title={Soft Actor-Critic Algorithms and Applications},
  author={Tuomas Haarnoja and Aurick Zhou and Kristian Hartikainen and George Tucker and Sehoon Ha and Jie Tan and Vikash Kumar and Henry Zhu and Abhishek Gupta and Pieter Abbeel and Sergey Levine},
  journal={arXiv preprint arXiv:1812.05905},
  year={2018}
}
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022