Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Overview

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018)

By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and Jingdong Wang.

This code is a implementation of the weakly-supervised semantic segmentation experiments in the paper DSRG. The code is developed based on the Caffe framework.

Introduction

Overview of DSRG Overview of the proposed approach. The Deep Seeded Region Growing module takes the seed cues and segmentation map as input to produces latent pixel-wise supervision which is more accurate and more complete than seed cues. Our method iterates between refining pixel-wise supervision and optimizing the parameters of a segmentation network.

License

DSRG is released under the MIT License (refer to the LICENSE file for details).

Citing DSRG

If you find DSRG useful in your research, please consider citing:

@inproceedings{huang2018dsrg,
    title={Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing},
    author={Huang, Zilong and Wang, Xinggang and Wang, Jiasi and Liu, Wenyu and Wang, Jingdong},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    pages={7014--7023},
    year={2018}
}

Installing dependencies

  • Python packages:
      $ pip install -r python-dependencies.txt
  • caffe (deeplabv2 version): deeplabv2 caffe installation instructions are available at https://bitbucket.org/aquariusjay/deeplab-public-ver2. Note, you need to compile caffe with python wrapper and support for python layers. Then add the caffe python path into training/tools/findcaffe.py.

  • Fully connected CRF wrapper (requires the Eigen3 package).

      $ pip install CRF/

Training the DSRG model

  • Go into the training directory:
      $ cd training
      $ mkdir localization_cues
  • Download the initial VGG16 model pretrained on Imagenet and put it in training/ folder.

  • Download CAM seed and put it in training/localization_cues folder. We use CAM for localizing the foreground seed classes and utilize the saliency detection technology DRFI for localizing background seed. We provide the python interface to DRFI here for convenience if you want to generate the seed by yourself.

      $ cd training/experiment/seed_mc
      $ mkdir models
  • Set root_folder parameter in train-s.prototxt, train-f.prototxt and PASCAL_DIR in run-s.sh to the directory with PASCAL VOC 2012 images

  • Run:

      $ bash run.sh

The trained model will be created in models

Acknowledgment

This code is heavily borrowed from SEC.

Owner
Zilong Huang
HUSTer
Zilong Huang
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
An inofficial PyTorch implementation of PREDATOR based on KPConv.

PREDATOR: Registration of 3D Point Clouds with Low Overlap An inofficial PyTorch implementation of PREDATOR based on KPConv. The code has been tested

ZhuLifa 14 Aug 03, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations

DSTC10 Track 2 - Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations This repository contains the data, scripts and baseline co

Alexa 51 Dec 17, 2022
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023