An example of time series augmentation methods with Keras

Overview

Time Series Augmentation

This is a collection of time series data augmentation methods and an example use using Keras.

News

  • 2020/04/16: Repository Created.
  • 2020/06/22: Accepted to ICPR 2020 - B. K. Iwana and S. Uchida, Time Series Data Augmentation for Neural Networks by Time Warping with a Discriminative Teacher, ICPR 2020 LINK
  • 2020/07/31: Survey Paper Posted on arXiv - B. K. Iwana and S. Uchida An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks, arXiv LINK
  • 2021/05/11: Tensorflow v1 branched. The master will now support Tensorflow v2.
  • 2021/07/15: Survey Paper Published on PLOS ONE - B. K. Iwana and S. Uchida An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks, PLOS ONE 16(7): e0254841, LINK

Requires

This code was developed in Python 3.6.9. and requires Tensorflow 2.4.1 and Keras 2.2.4

Normal Install

pip install tensorflow-gpu==2.4.1 keras==2.2.4 numpy==1.19.5 matplotlib==2.2.2 scikit-image==0.15.0 tqdm

Docker

cd docker
sudo docker build -t tsa .
docker run --runtime nvidia -rm -it -p 127.0.0.1:8888:8888 -v `pwd`:/work -w /work tsa jupyter notebook --allow-root

Newer docker installs might use --gpus all instead of --runtime nvidia

Dataset

main.py was designed to use the UCR Time Series Archive 2018 datasets. To install the datasets, download the .zip file from https://www.cs.ucr.edu/~eamonn/time_series_data_2018/ and extract the contents into the data folder.

Usage

Description of Time Series Augmentation Methods

Augmentation description

Jupyter Example

Jupyter Notebook

Keras Example

Example: To train a 1D VGG on the FiftyWords dataset from the UCR Time Series Archive 2018 with 4x the training dataset in Jittering, use:

python3 main.py --gpus=0 --dataset=CBF --preset_files --ucr2018 --normalize_input --train --save --jitter --augmentation_ratio=4 --model=vgg

Citation

B. K. Iwana and S. Uchida, "An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks," arXiv, 2020.

@article{iwana2020empirical,
  title={An Empirical Survey of Data Augmentation for Time Series Classification
  with Neural Networks},
  author={Iwana, Brian Kenji and Uchida, Seiichi},
  journal={arXiv preprint arXiv:2007.15951},
  year={2020}
}
Owner
九州大学 ヒューマンインタフェース研究室
Human Interface Laboratory, Kyushu University
九州大学 ヒューマンインタフェース研究室
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
Demonstrational Session git repo for H SAF User Workshop (28/1)

5th H SAF User Workshop The 5th H SAF User Workshop supported by EUMeTrain will be held in online in January 24-28 2022. This repository contains inst

H SAF 4 Aug 04, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Real Time Object Detection and Classification using Yolo Algorithm.

Real time Object detection & Classification using YOLO algorithm. Real Time Object Detection and Classification using Yolo Algorithm. What is Object D

Ketan Chawla 1 Apr 17, 2022