Official Implementation of SWAD (NeurIPS 2021)

Related tags

Deep Learningswad
Overview

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21)

Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, Sungrae Park.

Note that this project is built upon [email protected].

Preparation

Dependencies

pip install -r requirements.txt

Datasets

python -m domainbed.scripts.download --data_dir=/my/datasets/path

Environments

Environment details used for our study.

Python: 3.8.6
PyTorch: 1.7.0+cu92
Torchvision: 0.8.1+cu92
CUDA: 9.2
CUDNN: 7603
NumPy: 1.19.4
PIL: 8.0.1

How to Run

train_all.py script conducts multiple leave-one-out cross-validations for all target domain.

python train_all.py exp_name --dataset PACS --data_dir /my/datasets/path

Experiment results are reported as a table. In the table, the row SWAD indicates out-of-domain accuracy from SWAD. The row SWAD (inD) indicates in-domain validation accuracy.

Example results:

+------------+--------------+---------+---------+---------+---------+
| Selection  | art_painting | cartoon |  photo  |  sketch |   Avg.  |
+------------+--------------+---------+---------+---------+---------+
|   oracle   |   82.245%    | 85.661% | 97.530% | 83.461% | 87.224% |
|    iid     |   87.919%    | 78.891% | 96.482% | 78.435% | 85.432% |
|    last    |   82.306%    | 81.823% | 95.135% | 82.061% | 85.331% |
| last (inD) |   95.807%    | 95.291% | 96.306% | 95.477% | 95.720% |
| iid (inD)  |   97.275%    | 96.619% | 96.696% | 97.253% | 96.961% |
|    SWAD    |   89.750%    | 82.942% | 97.979% | 81.870% | 88.135% |
| SWAD (inD) |   97.713%    | 97.649% | 97.316% | 98.074% | 97.688% |
+------------+--------------+---------+---------+---------+---------+

In this example, the DG performance of SWAD for PACS dataset is 88.135%.

If you set indomain_test option to True, the validation set is splitted to validation and test sets, and the (inD) keys become to indicate in-domain test accuracy.

Reproduce the results of the paper

We provide the instructions to reproduce the main results of the paper, Table 1 and 2. Note that the difference in a detailed environment or uncontrolled randomness may bring a little different result from the paper.

  • PACS
python train_all.py PACS0 --dataset PACS --deterministic --trial_seed 0 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py PACS1 --dataset PACS --deterministic --trial_seed 1 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py PACS2 --dataset PACS --deterministic --trial_seed 2 --checkpoint_freq 100 --data_dir /my/datasets/path
  • VLCS
python train_all.py VLCS0 --dataset VLCS --deterministic --trial_seed 0 --checkpoint_freq 50 --tolerance_ratio 0.2 --data_dir /my/datasets/path
python train_all.py VLCS1 --dataset VLCS --deterministic --trial_seed 1 --checkpoint_freq 50 --tolerance_ratio 0.2 --data_dir /my/datasets/path
python train_all.py VLCS2 --dataset VLCS --deterministic --trial_seed 2 --checkpoint_freq 50 --tolerance_ratio 0.2 --data_dir /my/datasets/path
  • OfficeHome
python train_all.py OH0 --dataset OfficeHome --deterministic --trial_seed 0 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py OH1 --dataset OfficeHome --deterministic --trial_seed 1 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py OH2 --dataset OfficeHome --deterministic --trial_seed 2 --checkpoint_freq 100 --data_dir /my/datasets/path
  • TerraIncognita
python train_all.py TR0 --dataset TerraIncognita --deterministic --trial_seed 0 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py TR1 --dataset TerraIncognita --deterministic --trial_seed 1 --checkpoint_freq 100 --data_dir /my/datasets/path
python train_all.py TR2 --dataset TerraIncognita --deterministic --trial_seed 2 --checkpoint_freq 100 --data_dir /my/datasets/path
  • DomainNet
python train_all.py DN0 --dataset DomainNet --deterministic --trial_seed 0 --checkpoint_freq 500 --data_dir /my/datasets/path
python train_all.py DN1 --dataset DomainNet --deterministic --trial_seed 1 --checkpoint_freq 500 --data_dir /my/datasets/path
python train_all.py DN2 --dataset DomainNet --deterministic --trial_seed 2 --checkpoint_freq 500 --data_dir /my/datasets/path

Main Results

Citation

The paper will be published at NeurIPS 2021.

@inproceedings{cha2021swad,
  title={SWAD: Domain Generalization by Seeking Flat Minima},
  author={Cha, Junbum and Chun, Sanghyuk and Lee, Kyungjae and Cho, Han-Cheol and Park, Seunghyun and Lee, Yunsung and Park, Sungrae},
  booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

License

This source code is released under the MIT license, included here.

This project includes some code from DomainBed, also MIT licensed.

Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022