Unified learning approach for egocentric hand gesture recognition and fingertip detection

Overview

Unified Gesture Recognition and Fingertip Detection

A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and fingertip detection at the same time. The proposed algorithm uses a single network to predict both finger class probabilities for classification and fingertips positional output for regression in one evaluation. From the finger class probabilities, the gesture is recognized, and using both of the information fingertips are localized. Instead of directly regressing the fingertips position from the fully connected (FC) layer of the CNN, we regress the ensemble of fingertips position from a fully convolutional network (FCN) and subsequently take ensemble average to regress the final fingertips positional output.

Update

Included robust real-time hand detection using yolo for better smooth performance in the first stage of the detection system and most of the code has been cleaned and restructured for ease of use. To get the previous versions, please visit the release section.

GitHub stars GitHub forks GitHub issues Version GitHub license

Requirements

  • TensorFlow-GPU==2.2.0
  • OpenCV==4.2.0
  • ImgAug==0.2.6
  • Weights: Download the pre-trained weights files of the unified gesture recognition and fingertip detection model and put the weights folder in the working directory.

Downloads Downloads

The weights folder contains three weights files. The fingertip.h5 is for unified gesture recignition and finertiop detection. yolo.h5 and solo.h5 are for the yolo and solo method of hand detection. (what is solo?)

Paper

Paper Paper

To get more information about the proposed method and experiments, please go through the paper. Cite the paper as:

@article{alam2021unified,
title = {Unified learning approach for egocentric hand gesture recognition and fingertip detection},
author={Alam, Mohammad Mahmudul and Islam, Mohammad Tariqul and Rahman, SM Mahbubur},
journal = {Pattern Recognition},
volume = {121},
pages = {108200},
year = {2021},
publisher={Elsevier},
}

Dataset

The proposed gesture recognition and fingertip detection model is trained by employing Scut-Ego-Gesture Dataset which has a total of eleven different single hand gesture datasets. Among the eleven different gesture datasets, eight of them are considered for experimentation. A detailed explanation about the partition of the dataset along with the list of the images used in the training, validation, and the test set is provided in the dataset/ folder.

Network Architecture

To implement the algorithm, the following network architecture is proposed where a single CNN is utilized for both hand gesture recognition and fingertip detection.

Prediction

To get the prediction on a single image run the predict.py file. It will run the prediction in the sample image stored in the data/ folder. Here is the output for the sample.jpg image.

Real-Time!

To run in real-time simply clone the repository and download the weights file and then run the real-time.py file.

directory > python real-time.py

In real-time execution, there are two stages. In the first stage, the hand can be detected by using either you only look once (yolo) or single object localization (solo) algorithm. By default, yolo will be used here. The detected hand portion is then cropped and fed to the second stage for gesture recognition and fingertip detection.

Output

Here is the output of the unified gesture recognition and fingertip detection model for all of the 8 classes of the dataset where not only each fingertip is detected but also each finger is classified.

Comments
  • Datasets

    Datasets

    Hello, I have a question about the dataset from your readme, I can't download the Scut-Ego-Gesture Dataset ,Because in China, this website has been banned. Can you share it with me in other ways? For example, Google or QQ email: [email protected]

    opened by CVUsers 10
  • how to download the weights, code not contain?

    how to download the weights, code not contain?

    The weights folder contains three weights files. The comparison.h5 is for first five classes and performance.h5 is for first eight classes. solo.h5 is for hand detection. but no link

    opened by mmxuan18 6
  • OSError: Unable to open file (unable to open file: name = 'yolo.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    OSError: Unable to open file (unable to open file: name = 'yolo.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    I use the Mac Os to run thereal-time.py file, and get the OSError, I also search on Google to find others' the same problem. It is probably the Keras problem. But I do not how to solve it

    opened by Hanswanglin 4
  • OSError: Unable to open file (unable to open file: name = 'weights/performance.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    OSError: Unable to open file (unable to open file: name = 'weights/performance.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper File "h5py/h5f.pyx", line 88, in h5py.h5f.open OSError: Unable to open file (unable to open file: name = 'weights/performance.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    opened by Jasonmes 2
  • left hand?

    left hand?

    Hi, first it's really cool work!

    Is the left hand included in the training images? I have been playing around with some of my own images and it seems that it doesn't really recognize the left hand in a palm-down position...

    If I want to include the left hand, do you think it would be possible if I train the network with the image flipped?

    opened by myhjiang 1
  • why are there two hand detection provided?

    why are there two hand detection provided?

    A wonderful work!!As mentioned above, the Yolo and Solo detection models are provided. I wonder what is the advatange of each model comparing to the other and what is the dataset to train the detect.

    opened by DanielMao2015 1
  • Difference of classes5.h5 and classes8.h5

    Difference of classes5.h5 and classes8.h5

    Hi, May i know the difference when training classes5 and classes8? are the difference from the dataset used for training by excluding SingleSix, SingleSeven, SingleEight or there are other modification such as changing the model structure or parameters?

    Thanks

    opened by danieltanimanuel 1
  • Using old versions of tensorflow, can't install the dependencies on my macbook and with newer versions it's constatly failing.

    Using old versions of tensorflow, can't install the dependencies on my macbook and with newer versions it's constatly failing.

    When trying to install the required version of tensorflow:

    pip3 install tensorflow==1.15.0
    ERROR: Could not find a version that satisfies the requirement tensorflow==1.15.0 (from versions: 2.2.0rc3, 2.2.0rc4, 2.2.0, 2.2.1, 2.2.2, 2.3.0rc0, 2.3.0rc1, 2.3.0rc2, 2.3.0, 2.3.1, 2.3.2, 2.4.0rc0, 2.4.0rc1, 2.4.0rc2, 2.4.0rc3, 2.4.0rc4, 2.4.0, 2.4.1)
    ERROR: No matching distribution found for tensorflow==1.15.0
    

    I even tried downloading the .whl file from the pypi and try manually installing it, but that didn't work too:

    pip3 install ~/Downloads/tensorflow-1.15.0-cp37-cp37m-macosx_10_11_x86_64.whl
    ERROR: tensorflow-1.15.0-cp37-cp37m-macosx_10_11_x86_64.whl is not a supported wheel on this platform.
    

    Tried with both python3.6 and python3.8

    So it would be great to update the dependencies :)

    opened by KoStard 1
  • Custom Model keyword arguments Error

    Custom Model keyword arguments Error

    Change model = Model(input=model.input, outputs=[probability, position]) to model = Model(inputs=model.input, outputs=[probability, position]) on line 22 of net/network.py

    opened by Rohit-Jain-2801 1
  • Problem of weights

    Problem of weights

    Hi,when load the solo.h5(In solo.py line 14:"self.model.load_weights(weights)") it will report errors: Process finished with exit code -1073741819 (0xC0000005) keras2.2.5+tensorflow1.14.0+cuda10.0

    opened by MC-E 1
Releases(v2.0)
Owner
Mohammad
Machine Learning | Graduate Research Assistant at CORAL Lab
Mohammad
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022