Unified learning approach for egocentric hand gesture recognition and fingertip detection

Overview

Unified Gesture Recognition and Fingertip Detection

A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and fingertip detection at the same time. The proposed algorithm uses a single network to predict both finger class probabilities for classification and fingertips positional output for regression in one evaluation. From the finger class probabilities, the gesture is recognized, and using both of the information fingertips are localized. Instead of directly regressing the fingertips position from the fully connected (FC) layer of the CNN, we regress the ensemble of fingertips position from a fully convolutional network (FCN) and subsequently take ensemble average to regress the final fingertips positional output.

Update

Included robust real-time hand detection using yolo for better smooth performance in the first stage of the detection system and most of the code has been cleaned and restructured for ease of use. To get the previous versions, please visit the release section.

GitHub stars GitHub forks GitHub issues Version GitHub license

Requirements

  • TensorFlow-GPU==2.2.0
  • OpenCV==4.2.0
  • ImgAug==0.2.6
  • Weights: Download the pre-trained weights files of the unified gesture recognition and fingertip detection model and put the weights folder in the working directory.

Downloads Downloads

The weights folder contains three weights files. The fingertip.h5 is for unified gesture recignition and finertiop detection. yolo.h5 and solo.h5 are for the yolo and solo method of hand detection. (what is solo?)

Paper

Paper Paper

To get more information about the proposed method and experiments, please go through the paper. Cite the paper as:

@article{alam2021unified,
title = {Unified learning approach for egocentric hand gesture recognition and fingertip detection},
author={Alam, Mohammad Mahmudul and Islam, Mohammad Tariqul and Rahman, SM Mahbubur},
journal = {Pattern Recognition},
volume = {121},
pages = {108200},
year = {2021},
publisher={Elsevier},
}

Dataset

The proposed gesture recognition and fingertip detection model is trained by employing Scut-Ego-Gesture Dataset which has a total of eleven different single hand gesture datasets. Among the eleven different gesture datasets, eight of them are considered for experimentation. A detailed explanation about the partition of the dataset along with the list of the images used in the training, validation, and the test set is provided in the dataset/ folder.

Network Architecture

To implement the algorithm, the following network architecture is proposed where a single CNN is utilized for both hand gesture recognition and fingertip detection.

Prediction

To get the prediction on a single image run the predict.py file. It will run the prediction in the sample image stored in the data/ folder. Here is the output for the sample.jpg image.

Real-Time!

To run in real-time simply clone the repository and download the weights file and then run the real-time.py file.

directory > python real-time.py

In real-time execution, there are two stages. In the first stage, the hand can be detected by using either you only look once (yolo) or single object localization (solo) algorithm. By default, yolo will be used here. The detected hand portion is then cropped and fed to the second stage for gesture recognition and fingertip detection.

Output

Here is the output of the unified gesture recognition and fingertip detection model for all of the 8 classes of the dataset where not only each fingertip is detected but also each finger is classified.

Comments
  • Datasets

    Datasets

    Hello, I have a question about the dataset from your readme, I can't download the Scut-Ego-Gesture Dataset ,Because in China, this website has been banned. Can you share it with me in other ways? For example, Google or QQ email: [email protected]

    opened by CVUsers 10
  • how to download the weights, code not contain?

    how to download the weights, code not contain?

    The weights folder contains three weights files. The comparison.h5 is for first five classes and performance.h5 is for first eight classes. solo.h5 is for hand detection. but no link

    opened by mmxuan18 6
  • OSError: Unable to open file (unable to open file: name = 'yolo.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    OSError: Unable to open file (unable to open file: name = 'yolo.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    I use the Mac Os to run thereal-time.py file, and get the OSError, I also search on Google to find others' the same problem. It is probably the Keras problem. But I do not how to solve it

    opened by Hanswanglin 4
  • OSError: Unable to open file (unable to open file: name = 'weights/performance.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    OSError: Unable to open file (unable to open file: name = 'weights/performance.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper File "h5py/h5f.pyx", line 88, in h5py.h5f.open OSError: Unable to open file (unable to open file: name = 'weights/performance.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)

    opened by Jasonmes 2
  • left hand?

    left hand?

    Hi, first it's really cool work!

    Is the left hand included in the training images? I have been playing around with some of my own images and it seems that it doesn't really recognize the left hand in a palm-down position...

    If I want to include the left hand, do you think it would be possible if I train the network with the image flipped?

    opened by myhjiang 1
  • why are there two hand detection provided?

    why are there two hand detection provided?

    A wonderful work!!As mentioned above, the Yolo and Solo detection models are provided. I wonder what is the advatange of each model comparing to the other and what is the dataset to train the detect.

    opened by DanielMao2015 1
  • Difference of classes5.h5 and classes8.h5

    Difference of classes5.h5 and classes8.h5

    Hi, May i know the difference when training classes5 and classes8? are the difference from the dataset used for training by excluding SingleSix, SingleSeven, SingleEight or there are other modification such as changing the model structure or parameters?

    Thanks

    opened by danieltanimanuel 1
  • Using old versions of tensorflow, can't install the dependencies on my macbook and with newer versions it's constatly failing.

    Using old versions of tensorflow, can't install the dependencies on my macbook and with newer versions it's constatly failing.

    When trying to install the required version of tensorflow:

    pip3 install tensorflow==1.15.0
    ERROR: Could not find a version that satisfies the requirement tensorflow==1.15.0 (from versions: 2.2.0rc3, 2.2.0rc4, 2.2.0, 2.2.1, 2.2.2, 2.3.0rc0, 2.3.0rc1, 2.3.0rc2, 2.3.0, 2.3.1, 2.3.2, 2.4.0rc0, 2.4.0rc1, 2.4.0rc2, 2.4.0rc3, 2.4.0rc4, 2.4.0, 2.4.1)
    ERROR: No matching distribution found for tensorflow==1.15.0
    

    I even tried downloading the .whl file from the pypi and try manually installing it, but that didn't work too:

    pip3 install ~/Downloads/tensorflow-1.15.0-cp37-cp37m-macosx_10_11_x86_64.whl
    ERROR: tensorflow-1.15.0-cp37-cp37m-macosx_10_11_x86_64.whl is not a supported wheel on this platform.
    

    Tried with both python3.6 and python3.8

    So it would be great to update the dependencies :)

    opened by KoStard 1
  • Custom Model keyword arguments Error

    Custom Model keyword arguments Error

    Change model = Model(input=model.input, outputs=[probability, position]) to model = Model(inputs=model.input, outputs=[probability, position]) on line 22 of net/network.py

    opened by Rohit-Jain-2801 1
  • Problem of weights

    Problem of weights

    Hi,when load the solo.h5(In solo.py line 14:"self.model.load_weights(weights)") it will report errors: Process finished with exit code -1073741819 (0xC0000005) keras2.2.5+tensorflow1.14.0+cuda10.0

    opened by MC-E 1
Releases(v2.0)
Owner
Mohammad
Machine Learning | Graduate Research Assistant at CORAL Lab
Mohammad
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
HyperPose is a library for building high-performance custom pose estimation applications.

HyperPose is a library for building high-performance custom pose estimation applications.

TensorLayer Community 1.2k Jan 04, 2023