Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Overview

Deep Adversarial Decomposition

PDF | Supp | 1min-DemoVideo

Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework for Separating Superimposed Images", in CVPR 2020.

In the computer vision field, many tasks can be considered as image layer mixture/separation problems. For example, when we take a picture on rainy days, the image obtained can be viewed as a mixture of two layers: a rain streak layer and a clean background layer. When we look through a transparent glass, we see a mixture of the scene beyond the glass and the scene reflected by the glass.

Separating individual image layers from a single mixed image has long been an important but challenging task. We propose a unified framework named “deep adversarial decomposition” for single superimposed image separation. Our method deals with both linear and non-linear mixtures under an adversarial training paradigm. Considering the layer separating ambiguity that given a single mixed input, there could be an infinite number of possible solutions, we introduce a “Separation-Critic” - a discriminative network which is trained to identify whether the output layers are well-separated and thus further improves the layer separation. We also introduce a “crossroad l1” loss function, which computes the distance between the unordered outputs and their references in a crossover manner so that the training can be well-instructed with pixel-wise supervision. Experimental results suggest that our method significantly outperforms other popular image separation frameworks. Without specific tuning, our method achieves the state of the art results on multiple computer vision tasks, including the image deraining, photo reflection removal, and image shadow removal.

teaser

In this repository, we implement the training and testing of our paper based on pytorch and provide several demo datasets that can be used for reproduce the results reported in our paper. With the code, you can also try on your own datasets by following the instructions below.

Our code is partially adapted from the project pytorch-CycleGAN-and-pix2pix.

Requirements

See Requirements.txt.

Setup

  1. Clone this repo:
git clone https://github.com/jiupinjia/Deep-adversarial-decomposition.git 
cd Deep-adversarial-decomposition
  1. Download our demo datasets from 1) Google Drive; or 2) BaiduYun (Key: m9x1), and unzip into the repo directory.
unzip datasets.zip

Please note that in each of our demo datasets, we only uploaded a very small part of the images, which are only used as an example to show how the structure of the file directory is organized. To reproduce the results reported in our paper, you need to download the full versions of these datasets. All datasets used in our experiments are publicly available. Please check out our paper for more details.

Task 1: Image decomposition

teaser

On Stanford-Dogs + VGG-Flowers

  • To train the model:
python train.py --dataset dogsflowers --net_G unet_128 --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --output_auto_enhance
  • To test the model:
python eval_unmix.py --dataset dogsflowers --ckptdir checkpoints --in_size 128 --net_G unet_128 --save_output

On MNIST + MNIST

  • To train the model:
python train.py --dataset mnist --net_G unet_64 --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --output_auto_enhance

Task 2: Image deraining

teaser

On Rain100H

  • To train the model:
python train.py --dataset rain100h --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_512 --pixel_loss pixel_loss --metric psnr_gt1
  • To test the model:
python eval_derain.py --dataset rain100h --ckptdir checkpoints --net_G unet_512 --in_size 512 --save_output

On Rain800

  • To train the model:
python train.py --dataset rain800 --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_512 --pixel_loss pixel_loss --metric psnr_gt1
  • To test the model:
python eval_derain.py --dataset rain800 --ckptdir checkpoints --net_G unet_512 --in_size 512 --save_output

On DID-MDN

  • To train the model:
python train.py --dataset did-mdn --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_512 --pixel_loss pixel_loss --metric psnr_gt1
python eval_derain.py --dataset did-mdn-test1 --ckptdir checkpoints --net_G unet_512 --save_output
  • To test the model on DDN-1k:
python eval_derain.py --dataset did-mdn-test2 --ckptdir checkpoints --net_G unet_512 --in_size 512 --save_output

Task 3: Image reflection removal

teaser

On Synthesis-Reflection

  • To train the model (together on all three subsets [defocused, focused, ghosting]):
python train.py --dataset syn3-all --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_512 --pixel_loss pixel_loss --metric psnr_gt1
  • To test the model:
python eval_dereflection.py --dataset syn3-all --ckptdir checkpoints --net_G unet_512 --in_size 512 --save_output

You can also train and test separately on the three subsets of Synthesis-Reflection by specifying --dataset above to syn3-defocused, syn3-focused, or syn3-ghosting.

On BDN

  • To train the model:
python train.py --dataset bdn --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_256 --pixel_loss pixel_loss --metric psnr_gt1
  • To test the model:
python eval_dereflection.py --dataset bdn --ckptdir checkpoints --net_G unet_256 --in_size 256 --save_output

On Zhang's dataset

  • To train the model:
python train.py --dataset xzhang --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_512 --pixel_loss pixel_loss --metric psnr_gt1
  • To test the model:
python eval_dereflection.py --dataset xzhang --ckptdir checkpoints --net_G unet_512 --in_size 512 --save_output

Task 4: Shadow Removal

teaser

On ISTD

  • To train the model:
python train.py --dataset istd --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_256 --pixel_loss pixel_loss --metric labrmse_gt1
  • To test the model:
python eval_deshadow.py --dataset istd --ckptdir checkpoints --net_G unet_256 --in_size 256 --save_output

On SRD

  • To train the model:
python train.py --dataset srd --checkpoint_dir checkpoints --vis_dir val_out --max_num_epochs 200 --batch_size 2 --enable_d1d2 --enable_d3 --enable_synfake --net_G unet_512 --pixel_loss pixel_loss --metric labrmse_gt1
  • To test the model:
python eval_deshadow.py --dataset srd --ckptdir checkpoints --net_G unet_512 --in_size 512 --save_output

Pretrained Models

The pre-trained models of the above examples can be found in the following link: https://drive.google.com/drive/folders/1Tv4-woRBZOVUInFLs0-S_cV2u-OjbhQ-?usp=sharing

Citation

If you use this code for your research, please cite our paper:

@inproceedings{zou2020deep,
  title={Deep Adversarial Decomposition: A Unified Framework for Separating Superimposed Images},
  author={Zou, Zhengxia and Lei, Sen and Shi, Tianyang and Shi, Zhenwei and Ye, Jieping},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={12806--12816},
  year={2020}
}
Owner
Zhengxia Zou
Postdoc at the University of Michigan. Research interest: computer vision and applications in remote sensing, self-driving, and video games.
Zhengxia Zou
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022