Fortuitous Forgetting in Connectionist Networks

Overview

Fortuitous Forgetting in Connectionist Networks

Introduction

This repository includes reference code for the paper Fortuitous Forgetting in Connectionist Networks (ICLR 2022).

@inproceedings{
  zhou2022fortuitous,
  title={Fortuitous Forgetting in Connectionist Networks},
  author={Hattie Zhou and Ankit Vani and Hugo Larochelle and Aaron Courville},
  booktitle={International Conference on Learning Representations},
  year={2022},
  url={https://openreview.net/forum?id=ei3SY1_zYsE}
}

Targeted Forgetting

This code implements the experiments on partial weight perturbations and their effects on easy or hard examples. Scripts are stored in /targeted_forgetting.

To run KE-style forgetting:

python mixed_group_training.py --seed 1 --train_perc 0.1 --random_perc 0.1 --keep_perc 0.5 --train_iters 50000 --fname new_rand_reinit_train0.1_mislabel0.1 --no_wandb

To run IMP-style forgetting:

python mixed_group_training.py --seed 1 --train_perc 1 --random_perc 0.0 --keep_perc 0.3 --train_iters 50000 --weight_mask --reset_to_zero --rewind_to_init --margin_groups --fname new_weight_rewind_zero_train1_margin0.1 --no_wandb

Later Layer Forgetting

This code builds upon the repository for Knowledge Evolution in Neural Networks. Scripts are stored in /llf_ke.

To run 10 generations of LLF on the Flower102 dataset:

python train_KE_cls.py --epochs 200 --num_generations 11 --name resetlayer4_flower_resnet18 --weight_decay 0.0001 --arch Split_ResNet18 --reset_layer_name layer4 --set Flower102 --data $DATA_DIR --no_wandb

To run 10 generations of KE:

python train_KE_cls.py --epochs 200 --num_generations 11 --name ke_kels_flower_resnet18 --weight_decay 0.0001 --arch Split_ResNet18 --split_rate 0.8 --split_mode kels --set Flower102 --data $DATA_DIR --no_wandb

To run 10 generations-equivalent of the long baseline on the Flower102 dataset:

python train_KE_cls.py --epochs 2200 --num_generations 1 --name resetlayer4_flower_resnet18_long2200 --weight_decay 0.0001 --arch Split_ResNet18 --reset_layer_name layer4 --set Flower102 --eval_intermediate_tst 200 --data $DATA_DIR --no_wandb

To run freeze later layers experiment:

python train_KE_cls.py --epochs 200 --num_generations 11 --name resetlayer4_flower_resnet18_freeze_reset_layers --weight_decay 0.0001 --arch Split_ResNet18 --reset_layer_name layer4 --data $DATA_DIR --set Flower102 --reverse_freeze --freeze_non_reset --optimizer sgd_TEMP --no_wandb

To run freeze early layers experiment:

python train_KE_cls.py --epochs 200 --num_generations 11 --name resetlayer4_flower_resnet18_freeze_nonreset_layers --weight_decay 0.0001 --arch Split_ResNet18 --reset_layer_name layer4 --data $DATA_DIR --set Flower102 --freeze_non_reset --optimizer sgd_TEMP --no_wandb

To run freeze later layers with fixed seed experiment:

python train_KE_cls.py --epochs 200 --num_generations 11 --name resetlayer4_flower_resnet18_freeze_reset_layers --weight_decay 0.0001 --arch Split_ResNet18 --reset_layer_name layer4 --data $DATA_DIR --set Flower102 --reverse_freeze --freeze_non_reset --optimizer sgd_TEMP --seed 0 --fix_seed --no_wandb

Ease-of-teaching

This code builds upon the repository for Ease-of-Teaching and Language Structure from Emergent Communication. Scripts are stored in /ease_of_teaching.

To run the no reset baseline:

python forget_train.py --fname baseline_no_reset --seed 0 --no_wandb

To run the reset receiver baseline:

python forget_train.py --resetNum 50 --fname baseline_reset_receiver --seed 0 --reset_receiver --no_wandb

To run partial balanced forgetting (PBF):

python forget_train.py --resetNum 100 --fname same_weight_reinit_sender10_receiver10_reset100 --seed 0 --forget_sender --sender_keep_perc 0.1 --forget_receiver --receiver_keep_perc 0.1 --weight_mask --same_mask --no_wandb

To run targeted forgettine experiments:

python mixed_language_forget_samebatch.py --group_vars same_mask weight_mask reset_to_zero keep_perc seed trainIters train_with_reset reset_every --seed 0 --keep_perc 0.5 --fname new_rand_reinit

python mixed_language_forget_samebatch.py --group_vars same_mask weight_mask reset_to_zero keep_perc seed trainIters train_with_reset reset_every --seed 0 --keep_perc 0.5 --fname same_weight_zero --same_mask --weight_mask --reset_to_zero

Owner
Hattie Zhou
Hattie Zhou
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"

MIRCO PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation Dependencies Python 3.

Big Data and Multi-modal Computing Group, CRIPAC 9 Dec 08, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022