SAMO: Streaming Architecture Mapping Optimisation

Overview

SAMO: Streaming Architecture Mapping Optimiser

The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model onto an FPGA platform for Streaming Architecture frameworks. Both a Simulated Annealing and Brute Force optimiser are implemented. We currently support the following frameworks:

Installation

You can install this package using:

python -m pip install samo

Usage

The general usage of the SAMO tool can be seen by running python -m samo --help.

Example platform configurations are given in the platforms directory and example CNN models can be generated by running python scripts/generate_networks.py.

FINN

In order to run the optimiser with the FINN toolflow, the first step is to download the following fork

git clone https://github.com/Yu-Zhewen/finn.git
cd finn
git checkout 4cc0b6fdae2f5c06f0b5bcc6fa45fba4d8b69111

As FINN requires docker, set SAMO_DIR to the path of SAMO in run_docker.sh, before entering the docker.

bash run_docker.sh

Within the docker, generate the FINN-ONNX through the following steps.

cd ../samo
cp models/${network}.onnx outputs/saved/finn/${network}.onnx
cp ../finn/notebooks/samo/config/${network}.json ../finn/notebooks/samo/config.json
jupyter nbconvert --to notebook --execute ../finn/notebooks/samo/pre_optimiser_steps.ipynb
mv ../finn/notebooks/samo/pre_optimiser_steps.nbconvert.ipynb outputs/saved/finn/${network}_pre_optimiser_steps.nbconvert.ipynb

To optimise the CNN model in the FINN-ONNX format, you need to do:

python -m samo --optimiser annealing --model outputs/saved/finn/${network}_pre_optimiser.onnx  \
    --backend finn --platform platforms/zedboard.json \
    --output-path outputs/saved/finn/${network}_post_optimiser.onnx

Finally, the following command is used to generate the hardware.

jupyter nbconvert --to notebook --execute ../finn/notebooks/samo/post_optimiser_steps.ipynb

HLS4ML

This tool can be used to generate optimised designs for the HLS4ML framework. SAMO tunes the reuse-factor for layers of the CNN model, and generates a Resource driven design.

To optimise a keras model for a given platform, run the following:

python -m samo --optimiser annealing --model models/model.keras \
    --backend hls4ml --platform platforms/zedboard.json \
    --output-path outputs/model_hls4ml.json

The previous command generates a configuration file (outputs/model_hls4ml.json), which can be used by the HLS4ML to generate hardware. To do this, you will need to use the HLS4ML API to convert this configuration file into a HLS project.

import hls4ml
from tensorflow import keras

# load the configuration
with open("outputs/model_hls4ml.json", "r") as f:
    config = json.load(f)

# load the platform
with open("platforms/zedboard.json", "r") as f:
    platform = json.load(f)

# load the keras model
model = keras.models.load_model("models/model.keras")

# create the hls model
hls_model = hls4ml.converters.convert_from_keras_model(model, hls_config=config,
        output_dir="outputs/hls4ml_prj",  io_type="io_stream", fpga_part=platform["part"])

# build the HLS project
hls_model.build(csim=True, cosim=True)

Feel free to post an issue if you have any questions or problems!

Owner
Alexander Montgomerie-Corcoran
PhD Student at Imperial College London
Alexander Montgomerie-Corcoran
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
A Lightweight Hyperparameter Optimization Tool 🚀

Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

136 Jan 08, 2023
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
Video Instance Segmentation with a Propose-Reduce Paradigm (ICCV 2021)

Propose-Reduce VIS This repo contains the official implementation for the paper: Video Instance Segmentation with a Propose-Reduce Paradigm Huaijia Li

DV Lab 39 Nov 23, 2022
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022