Python Multi-Agent Reinforcement Learning framework

Related tags

Deep Learningpymarl
Overview
- Please pay attention to the version of SC2 you are using for your experiments. 
- Performance is *not* always comparable between versions. 
- The results in SMAC (https://arxiv.org/abs/1902.04043) use SC2.4.6.2.69232 not SC2.4.10.

Python MARL framework

PyMARL is WhiRL's framework for deep multi-agent reinforcement learning and includes implementations of the following algorithms:

PyMARL is written in PyTorch and uses SMAC as its environment.

Installation instructions

Build the Dockerfile using

cd docker
bash build.sh

Set up StarCraft II and SMAC:

bash install_sc2.sh

This will download SC2 into the 3rdparty folder and copy the maps necessary to run over.

The requirements.txt file can be used to install the necessary packages into a virtual environment (not recomended).

Run an experiment

python3 src/main.py --config=qmix --env-config=sc2 with env_args.map_name=2s3z

The config files act as defaults for an algorithm or environment.

They are all located in src/config. --config refers to the config files in src/config/algs --env-config refers to the config files in src/config/envs

To run experiments using the Docker container:

bash run.sh $GPU python3 src/main.py --config=qmix --env-config=sc2 with env_args.map_name=2s3z

All results will be stored in the Results folder.

The previous config files used for the SMAC Beta have the suffix _beta.

Saving and loading learnt models

Saving models

You can save the learnt models to disk by setting save_model = True, which is set to False by default. The frequency of saving models can be adjusted using save_model_interval configuration. Models will be saved in the result directory, under the folder called models. The directory corresponding each run will contain models saved throughout the experiment, each within a folder corresponding to the number of timesteps passed since starting the learning process.

Loading models

Learnt models can be loaded using the checkpoint_path parameter, after which the learning will proceed from the corresponding timestep.

Watching StarCraft II replays

save_replay option allows saving replays of models which are loaded using checkpoint_path. Once the model is successfully loaded, test_nepisode number of episodes are run on the test mode and a .SC2Replay file is saved in the Replay directory of StarCraft II. Please make sure to use the episode runner if you wish to save a replay, i.e., runner=episode. The name of the saved replay file starts with the given env_args.save_replay_prefix (map_name if empty), followed by the current timestamp.

The saved replays can be watched by double-clicking on them or using the following command:

python -m pysc2.bin.play --norender --rgb_minimap_size 0 --replay NAME.SC2Replay

Note: Replays cannot be watched using the Linux version of StarCraft II. Please use either the Mac or Windows version of the StarCraft II client.

Documentation/Support

Documentation is a little sparse at the moment (but will improve!). Please raise an issue in this repo, or email Tabish

Citing PyMARL

If you use PyMARL in your research, please cite the SMAC paper.

M. Samvelyan, T. Rashid, C. Schroeder de Witt, G. Farquhar, N. Nardelli, T.G.J. Rudner, C.-M. Hung, P.H.S. Torr, J. Foerster, S. Whiteson. The StarCraft Multi-Agent Challenge, CoRR abs/1902.04043, 2019.

In BibTeX format:

@article{samvelyan19smac,
  title = {{The} {StarCraft} {Multi}-{Agent} {Challenge}},
  author = {Mikayel Samvelyan and Tabish Rashid and Christian Schroeder de Witt and Gregory Farquhar and Nantas Nardelli and Tim G. J. Rudner and Chia-Man Hung and Philiph H. S. Torr and Jakob Foerster and Shimon Whiteson},
  journal = {CoRR},
  volume = {abs/1902.04043},
  year = {2019},
}

License

Code licensed under the Apache License v2.0

Owner
whirl
Whiteson Research Lab
whirl
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Package to compute Mauve, a similarity score between neural text and human text. Install with `pip install mauve-text`.

MAUVE MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE

Krishna Pillutla 182 Jan 02, 2023
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023