Few-NERD: Not Only a Few-shot NER Dataset

Related tags

Deep LearningFew-NERD
Overview

Few-NERD: Not Only a Few-shot NER Dataset

This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset. Check out the website of Few-NERD.

Contents

Overview

Few-NERD is a large-scale, fine-grained manually annotated named entity recognition dataset, which contains 8 coarse-grained types, 66 fine-grained types, 188,200 sentences, 491,711 entities and 4,601,223 tokens. Three benchmark tasks are built, one is supervised: Few-NERD (SUP) and the other two are few-shot: Few-NERD (INTRA) and Few-NERD (INTER).

The schema of Few-NERD is:

Few-NERD is manually annotated based on the context, for example, in the sentence "London is the fifth album by the British rock band…", the named entity London is labeled as Art-Music.

Requirements

 Run the following script to install the remaining dependencies,

pip install -r requirements.txt

Few-NERD Dataset

Get the Data

  • Few-NERD contains 8 coarse-grained types, 66 fine-grained types, 188,200 sentences, 491,711 entities and 4,601,223 tokens.
  • We have splitted the data into 3 training mode. One for supervised setting-supervised, theo ther two for few-shot setting inter and intra. Each contains three files train.txtdev.txttest.txtsuperviseddatasets are randomly split. inter datasets are randomly split within coarse type, i.e. each file contains all 8 coarse types but different fine-grained types. intra datasets are randomly split by coarse type.
  • The splitted dataset can be downloaded automatically once you run the model. If you want to download the data manually, run data/download.sh, remember to add parameter supervised/inter/intra to indicte the type of the dataset

To obtain the three benchmarks datasets of Few-NERD, simply run the bash file data/download.sh

bash data/download.sh supervised

Data Format

The data are pre-processed into the typical NER data forms as below (token\tlabel).

Between	O
1789	O
and	O
1793	O
he	O
sat	O
on	O
a	O
committee	O
reviewing	O
the	O
administrative	MISC-law
constitution	MISC-law
of	MISC-law
Galicia	MISC-law
to	O
little	O
effect	O
.	O

Structure

The structure of our project is:

--util
| -- framework.py
| -- data_loader.py
| -- viterbi.py             # viterbi decoder for structshot only
| -- word_encoder
| -- fewshotsampler.py

-- proto.py                 # prototypical model
-- nnshot.py                # nnshot model

-- train_demo.py            # main training script

Key Implementations

Sampler

As established in our paper, we design an N way K~2K shot sampling strategy in our work , the implementation is sat util/fewshotsampler.py.

ProtoBERT

Prototypical nets with BERT is implemented in model/proto.py.

How to Run

Run train_demo.py. The arguments are presented below. The default parameters are for proto model on intermode dataset.

-- mode                 training mode, must be inter, intra, or supervised
-- trainN               N in train
-- N                    N in val and test
-- K                    K shot
-- Q                    Num of query per class
-- batch_size           batch size
-- train_iter           num of iters in training
-- val_iter             num of iters in validation
-- test_iter            num of iters in testing
-- val_step             val after training how many iters
-- model                model name, must be proto, nnshot or structshot
-- max_length           max length of tokenized sentence
-- lr                   learning rate
-- weight_decay         weight decay
-- grad_iter            accumulate gradient every x iterations
-- load_ckpt            path to load model
-- save_ckpt            path to save model
-- fp16                 use nvidia apex fp16
-- only_test            no training process, only test
-- ckpt_name            checkpoint name
-- seed                 random seed
-- pretrain_ckpt        bert pre-trained checkpoint
-- dot                  use dot instead of L2 distance in distance calculation
-- use_sgd_for_bert     use SGD instead of AdamW for BERT.
# only for structshot
-- tau                  StructShot parameter to re-normalizes the transition probabilities
  • For hyperparameter --tau in structshot, we use 0.32 in 1-shot setting, 0.318 for 5-way-5-shot setting, and 0.434 for 10-way-5-shot setting.

  • Take structshot model on inter dataset for example, the expriments can be run as follows.

5-way-1~5-shot

python3 train_demo.py  --train data/mydata/train-inter.txt \
--val data/mydata/val-inter.txt --test data/mydata/test-inter.txt \
--lr 1e-3 --batch_size 2 --trainN 5 --N 5 --K 1 --Q 1 \
--train_iter 10000 --val_iter 500 --test_iter 5000 --val_step 1000 \
--max_length 60 --model structshot --tau 0.32

5-way-5~10-shot

python3 train_demo.py  --train data/mydata/train-inter.txt \
--val data/mydata/val-inter.txt --test data/mydata/test-inter.txt \
--lr 1e-3 --batch_size 2 --trainN 5 --N 5 --K 5 --Q 5 \
--train_iter 10000 --val_iter 500 --test_iter 5000 --val_step 1000 \
--max_length 60 --model structshot --tau 0.318

10-way-1~5-shot

python3 train_demo.py  --train data/mydata/train-inter.txt \
--val data/mydata/val-inter.txt --test data/mydata/test-inter.txt \
--lr 1e-3 --batch_size 2 --trainN 10 --N 10 --K 1 --Q 1 \
--train_iter 10000 --val_iter 500 --test_iter 5000 --val_step 1000 \
--max_length 60 --model structshot --tau 0.32

10-way-5~10-shot

python3 train_demo.py  --train data/mydata/train-inter.txt \
--val data/mydata/val-inter.txt --test data/mydata/test-inter.txt \
--lr 1e-3 --batch_size 2 --trainN 5 --N 5 --K 5 --Q 1 \
--train_iter 10000 --val_iter 500 --test_iter 5000 --val_step 1000 \
--max_length 60 --model structshot --tau 0.434

Citation

If you use Few-NERD in your work, please cite our paper:

@inproceedings{ding2021few,
title={Few-NERD: A Few-Shot Named Entity Recognition Dataset},
author={Ding, Ning and Xu, Guangwei and Chen, Yulin, and Wang, Xiaobin and Han, Xu and Xie, Pengjun and Zheng, Hai-Tao and Liu, Zhiyuan},
booktitle={ACL-IJCNLP},
year={2021}
}

Connection

If you have any questions, feel free to contact

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
ProMP: Proximal Meta-Policy Search

ProMP: Proximal Meta-Policy Search Implementations corresponding to ProMP (Rothfuss et al., 2018). Overall this repository consists of two branches: m

Jonas Rothfuss 212 Dec 20, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

2021-AIAC-QQ-Browser-Hyperparameter-Optimization-Rank6

Aigege 8 Mar 31, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Hold me tight! Influence of discriminative features on deep network boundaries This is the source code to reproduce the experiments of the NeurIPS 202

EPFL LTS4 19 Dec 10, 2021