Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Related tags

Deep LearningViSha
Overview

Triple-cooperative Video Shadow Detection

Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official link].
by Zhihao Chen1, Liang Wan1, Lei Zhu2, Jia Shen1, Huazhu Fu3, Wennan Liu4, and Jing Qin5
1College of Intelligence and Computing, Tianjin University
2Department of Applied Mathematics and Theoretical Physics, University of Cambridge
3Inception Institute of Artificial Intelligence, UAE
4Academy of Medical Engineering and Translational Medicine, Tianjin University
5The Hong Kong Polytechnic University

News: In 2021.4.7, We first release the code of TVSD and ViSha dataset.


Citation

@inproceedings{chen21TVSD,
     author = {Chen, Zhihao and Wan, Liang and Zhu, Lei and Shen, Jia and Fu, Huazhu and Liu, Wennan and Qin, Jing},
     title = {Triple-cooperative Video Shadow Detection},
     booktitle = {CVPR},
     year = {2021}
}

Dataset

ViSha dataset is available at ViSha Homepage

Requirement

  • Python 3.6
  • PyTorch 1.3.1
  • torchvision
  • numpy
  • tqdm
  • PIL
  • math
  • time
  • datatime
  • argparse
  • apex (alternative, fp16 for save memory and speedup)

Training

  1. Modify the data path on ./config.py
  2. Modify the pretrained backbone path on ./networks/resnext_modify/config.py
  3. Run by python train.py and model will be saved in ./models/TVSD

The pretrained ResNeXt model is ported from the official torch version, using the convertor provided by clcarwin. You can directly download the pretrained model ported by us.

Testing

  1. Modify the data path on ./config.py
  2. Make sure you have a snapshot in ./models/TVSD (Tips: You can download the trained model which is reported in our paper at BaiduNetdisk(pw: 8p5h) or Google Drive)
  3. Run by python infer.py to generate predicted masks
  4. Run by python evaluate.py to evaluate the generated results

Results in ViSha testing set

As mentioned in our paper, since there is no CNN-based method for video shadow detection, we make comparison against 12 state-of-the-art methods for relevant tasks, including BDRAR[1], DSD[2], MTMT[3] (single-image shadow detection), FPN[4], PSPNet[5] (single-image semantic segmentation), DSS[6], R^3 Net[7] (single-image saliency detection), PDBM[8], MAG[9] (video saliency detection), COSNet[10], FEELVOS[11], STM[12] (object object segmentation)
[1]L. Zhu, Z. Deng, X. Hu, C.-W. Fu, X. Xu, J. Qin, and P.-A. Heng. Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In ECCV, pages 121–136, 2018.
[2]Q. Zheng, X. Qiao, Y. Cao, and R.W. Lau. Distraction-aware shadow detection. In CVPR, pages 5167–5176, 2019.
[3]Z. Chen, L. Zhu, L. Wan, S. Wang, W. Feng, and P.-A. Heng. A multi-task mean teacher for semi-supervised shadow detection. In CVPR, pages 5611–5620, 2020.
[4]T.-Y. Lin, P. Doll´ar, R. Girshick, K. He, B. Hariharan, and S.Belongie. Feature pyramid networks for object detection. In CVPR, pages 2117–2125, 2017.
[5]H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In CVPR, pages 2881–2890, 2017.
[6]Q. Hou, M. Cheng, X. Hu, A. Borji, Z. Tu, and P. Torr. Deeply supervised salient object detection with short connections. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(4):815–828, 2019.
[7]Z. Deng, X. Hu, L. Zhu, X. Xu, J. Qin, G. Han, and P.-A. Heng. R3net: Recurrent residual refinement network for saliency detection. In IJCAI, pages 684–690. AAAI Press, 2018.
[8]H. Song, W. Wang, S. Zhao, J. Shen, and K.-M. Lam. Pyramid dilated deeper convlstm for video salient object detection. In ECCV, pages 715–731, 2018.
[9]H. Li, G. Chen, G. Li, and Y. Yu. Motion guided attention for video salient object detection. In ICCV, pages 7274–7283, 2019.
[10]X. Lu, W. Wang, C. Ma, J. Shen, L. Shao, and F. Porikli. See more, know more: Unsupervised video object segmentation with co-attention siamese networks. In CVPR, pages 3623–3632, 2019.
[11]P. Voigtlaender, Y. Chai, F. Schroff, H. Adam, B. Leibe, and L.-C. Chen. Feelvos: Fast end-to-end embedding learning for video object segmentation. In CVPR, June 2019.
[12]S.W. Oh, J.-Y. Lee, N. Xu, and S.J. Kim. Video object segmentation using space-time memory networks. In ICCV, pages 9226–9235, 2019.

We evaluate those methods and our TVSD in ViSha testing set and release all results in BaiduNetdisk(pw: ritw) or Google Drive

Owner
Zhihao Chen
Zhihao Chen
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
Course materials for Fall 2021 "CIS6930 Topics in Computing for Data Science" at New College of Florida

Fall 2021 CIS6930 Topics in Computing for Data Science This repository hosts course materials used for a 13-week course "CIS6930 Topics in Computing f

Yoshi Suhara 101 Nov 30, 2022
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022