Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Overview

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation

[Project website] [Paper]

This project is a PyTorch implementation of Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation, published in CoRL 2021.

Learning complex manipulation tasks in realistic, obstructed environments is a challenging problem due to hard exploration in the presence of obstacles and high-dimensional visual observations. Prior work tackles the exploration problem by integrating motion planning and reinforcement learning. However, the motion planner augmented policy requires access to state information, which is often not available in the real-world settings. To this end, we propose to distill the state-based motion planner augmented policy to a visual control policy via (1) visual behavioral cloning to remove the motion planner dependency along with its jittery motion, and (2) vision-based reinforcement learning with the guidance of the smoothed trajectories from the behavioral cloning agent. We validate our proposed approach on three manipulation tasks in obstructed environments and show its high sample-efficiency, outperforming state-of-the-art algorithms for visual policy learning.

Prerequisites

Installation

  1. Install Mujoco 2.0 and add the following environment variables into ~/.bashrc or ~/.zshrc.
# Download mujoco 2.0
$ wget https://www.roboti.us/download/mujoco200_linux.zip -O mujoco.zip
$ unzip mujoco.zip -d ~/.mujoco
$ mv ~/.mujoco/mujoco200_linux ~/.mujoco/mujoco200

# Copy mujoco license key `mjkey.txt` to `~/.mujoco`

# Add mujoco to LD_LIBRARY_PATH
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.mujoco/mujoco200/bin

# For GPU rendering (replace 418 with your nvidia driver version)
$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia-418

# Only for a headless server
$ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libGLEW.so:/usr/lib/nvidia-418/libGL.so
  1. Download this repository and install python dependencies
# Install system packages
sudo apt-get install libgl1-mesa-dev libgl1-mesa-glx libosmesa6-dev patchelf libopenmpi-dev libglew-dev python3-pip python3-numpy python3-scipy

# Create out/ folder for saving/loading RL checkpoints
cd mopa-pd
mkdir out

# Create checkpoints/ folder for saving/loading BC-Visual checkpoints
mkdir checkpoints

# Install required python packages in your new env
pip install -r requirements.txt
  1. Install ompl
# Linux
sudo apt install libyaml-cpp-dev
sh ./scripts/misc/installEigen.sh #from the home directory # install Eigen
sudo apt-get install libboost-all-dev # install Boost C++ for ompl

# Mac OS
brew install libyaml yaml-cpp
brew install eigen

# Build ompl
git clone [email protected]:ompl/ompl.git ../ompl
cd ../ompl
cmake .
sudo make install

# if ompl-x.x (x.x is the version) is installed in /usr/local/include, you need to rename it to ompl
mv /usr/local/include/ompl-x.x /usr/local/include/ompl
  1. Build motion planner python wrapper
cd ./mopa-pd/motion_planners
python setup.py build_ext --inplace
  1. Configure wandb for tracking experiments (optional)
  • Sign up for a free account at https://app.wandb.ai/login?signup=true.
  • Open this file: config/__init__.py
  • Set wandb argument to True.
  • Add your username to the entity argument.
  • Add your project name to the project argument.
  1. Servers without a monitor (optional)

You may use the following code to create a virtual monitor for rendering.

# Run the next line for Ubuntu
$ sudo apt-get install xserver-xorg libglu1-mesa-dev freeglut3-dev mesa-common-dev libxmu-dev libxi-dev

# Configure nvidia-x
$ sudo nvidia-xconfig -a --use-display-device=None --virtual=1280x1024

# Launch a virtual display
$ sudo /usr/bin/X :1 &

# Run a command with DISPLAY=:1
DISPLAY=:1 <command>

Available environments

SawyerPushObstacle-v0 SawyerLiftObstacle-v0 SawyerAssemblyObstacle-v0
Sawyer Push Sawyer Lift Sawyer Assembly

How to run experiments

Launch a virtual display (only for a headless server)

sudo /usr/bin/X :1 &

MoPA-RL

# train MoPA-RL policy
sh ./scripts/3d/assembly/mopa.sh 0 1234
sh ./scripts/3d/lift/mopa.sh 0 1234
sh ./scripts/3d/push/mopa.sh 0 1234

# evaluate MoPA-RL policy
sh ./scripts/3d/assembly/mopa_eval.sh 0 1234
sh ./scripts/3d/lift/mopa_eval.sh 0 1234
sh ./scripts/3d/push/mopa_eval.sh 0 1234

# generate MoPA-RL data for BC-Visual using trained MoPA-RL's checkpoint
sh ./scripts/3d/assembly/run_multiple_sh.sh
sh ./scripts/3d/lift/run_multiple_sh.sh
sh ./scripts/3d/push/run_multiple_sh.sh

BC-Visual

# pre-process MoPA-RL data
python util/state_img_preprocessing.py

cd rl # must be inside rl folder to execute the following commands

# bc_visual_args.py is the config for training and evaluating BC-Visual

# train BC-Visual 
python behavioral_cloning_visual.py

# evaluate BC-Visual
python evaluate_bc_visual.py

Baselines and Ours

  • Sawyer Push
###### Training
sh ./scripts/3d/push/bcrl_stochastic_two_buffers.sh 0 1234 # Ours
sh ./scripts/3d/push/bcrl_stochastic_two_buffers_mopa.sh 0 1234 # Ours (w/o BC Smoothing)
sh ./scripts/3d/push/bcrl_stochastic_two_buffers_dr.sh 0 1234 # Ours (w DR)
sh ./scripts/3d/push/bcrl_mopa_sota.sh 0 1234 # CoL 
sh ./scripts/3d/push/bcrl_sota.sh 0 1234 # CoL (w BC Smoothing) 
sh ./scripts/3d/push/mopa_asym.sh 0 1234 # MoPA Asym. SAC
sh ./scripts/3d/push/bcrl_stochastic_randweights.sh 0 1234 # Asym. SAC

###### Evaluation
sh ./scripts/3d/push/bcrl_stochastic_two_buffers_eval.sh 0 1234 # Ours
sh ./scripts/3d/push/bcrl_stochastic_two_buffers_mopa_eval.sh 0 1234 # Ours (w/o BC Smoothing)
sh ./scripts/3d/push/bcrl_stochastic_two_buffers_dr_eval.sh 0 1234 # Ours (w DR)
sh ./scripts/3d/push/bcrl_mopa_sota_eval.sh 0 1234 # CoL
sh ./scripts/3d/push/bcrl_sota_eval.sh 0 1234 # CoL (w BC Smoothing)
sh ./scripts/3d/push/mopa_asym_eval.sh 0 1234  # MoPA Asym. SAC
sh ./scripts/3d/push/bcrl_stochastic_randweights_eval.sh 0 1234 # Asym. SAC
  • Sawyer Lift
###### Training
sh ./scripts/3d/lift/bcrl_stochastic_two_buffers.sh 0 1234 # Ours
sh ./scripts/3d/lift/bcrl_stochastic_two_buffers_mopa.sh 0 1234 # Ours (w/o BC Smoothing)
sh ./scripts/3d/lift/bcrl_stochastic_two_buffers_dr.sh 0 1234 # Ours (w DR)
sh ./scripts/3d/lift/bcrl_mopa_sota.sh 0 1234 # CoL
sh ./scripts/3d/lift/bcrl_sota.sh 0 1234 # CoL (w BC Smoothing) 
sh ./scripts/3d/lift/mopa_asym.sh 0 1234 # MoPA Asym. SAC
sh ./scripts/3d/lift/bcrl_stochastic_randweights.sh 0 1234 # Asym. SAC

###### Evaluation
sh ./scripts/3d/lift/bcrl_stochastic_two_buffers_eval.sh 0 1234 # Ours
sh ./scripts/3d/lift/bcrl_stochastic_two_buffers_mopa_eval.sh 0 1234 # Ours (w/o BC Smoothing)
sh ./scripts/3d/lift/bcrl_stochastic_two_buffers_dr_eval.sh 0 1234 # Ours (w DR)
sh ./scripts/3d/lift/bcrl_mopa_sota_eval.sh 0 1234 # CoL
sh ./scripts/3d/lift/bcrl_sota_eval.sh 0 1234 # CoL (w BC Smoothing)
sh ./scripts/3d/lift/mopa_asym_eval.sh 0 1234 # MoPA Asym. SAC
sh ./scripts/3d/lift/bcrl_stochastic_randweights_eval.sh 0 1234 # Asym. SAC
  • Sawyer Assembly
###### Training
sh ./scripts/3d/assembly/bcrl_stochastic_two_buffers.sh 0 1234 # Ours
sh ./scripts/3d/assembly/bcrl_stochastic_two_buffers_mopa.sh 0 1234 # Ours (w/o BC Smoothing)
sh ./scripts/3d/assembly/bcrl_stochastic_two_buffers_dr.sh 0 1234 # Ours (w DR)
sh ./scripts/3d/assembly/bcrl_mopa_sota.sh 0 1234 # CoL
sh ./scripts/3d/assembly/bcrl_sota.sh 0 1234 # CoL (w BC Smoothing)
sh ./scripts/3d/assembly/mopa_asym.sh 0 1234 # MoPA Asym. SAC
sh ./scripts/3d/assembly/bcrl_stochastic_randweights.sh 0 1234 # Asym. SAC

###### Evaluation
sh ./scripts/3d/assembly/bcrl_stochastic_two_buffers_eval.sh 0 1234 # Ours
sh ./scripts/3d/assembly/bcrl_stochastic_two_buffers_mopa_eval.sh 0 1234 # Ours (w/o BC Smoothing)
sh ./scripts/3d/assembly/bcrl_stochastic_two_buffers_dr_eval.sh 0 1234 # Ours (w DR)
sh ./scripts/3d/assembly/bcrl_mopa_sota_eval.sh 0 1234 # CoL
sh ./scripts/3d/assembly/bcrl_sota_eval.sh 0 1234 # CoL (w BC Smoothing) 
sh ./scripts/3d/assembly/mopa_asym_eval.sh 0 1234 # MoPA Asym. SAC
sh ./scripts/3d/assembly/bcrl_stochastic_randweights_eval.sh 0 1234 # Asym. SAC

Domain Randomization

To run experiments with domain randomized simulation, the following parameters can be set in config:

  • dr: set to True to train the model with domain randomization
  • dr_params_set: choose as per the training environment - ["sawyer_push, sawyer_lift, sawyer_assembly]
  • dr_eval: set to True for evaluating the domain randomization model

Directories

The structure of the repository:

  • rl: Reinforcement learning code
  • env: Environment code for simulated experiments (2D Push and all Sawyer tasks)
  • config: Configuration files
  • util: Utility code
  • motion_planners: Motion planner code from MoPA-RL
  • scripts: Scripts for all experiments

Log directories:

  • logs/rl.ENV.DATE.PREFIX.SEED:
    • cmd.sh: A command used for running a job
    • git.txt: Log gitdiff
    • prarms.json: Summary of parameters
    • video: Generated evaulation videos (every evalute_interval)
    • wandb: Training summary of W&B, like tensorboard summary
    • ckpt_*.pt: Stored checkpoints (every ckpt_interval)
    • replay_*.pt: Stored replay buffers (every ckpt_interval)

Trouble shooting

Mujoco GPU rendering

To use GPU rendering for mujoco, you need to add /usr/lib/nvidia-000 (000 should be replaced with your NVIDIA driver version) to LD_LIBRARY_PATH before installing mujoco-py. Then, during mujoco-py compilation, it will show you linuxgpuextension instead of linuxcpuextension. In Ubuntu 18.04, you may encounter an GL-related error while building mujoco-py, open venv/lib/python3.7/site-packages/mujoco_py/gl/eglshim.c and comment line 5 #include <GL/gl.h> and line 7 #include <GL/glext.h>.

Virtual display on headless machines

On servers, you don’t have a monitor. Use this to get a virtual monitor for rendering and put DISPLAY=:1 in front of a command.

# Run the next line for Ubuntu
$ sudo apt-get install xserver-xorg libglu1-mesa-dev freeglut3-dev mesa-common-dev libxmu-dev libxi-dev

# Configure nvidia-x
$ sudo nvidia-xconfig -a --use-display-device=None --virtual=1280x1024

# Launch a virtual display
$ sudo /usr/bin/X :1 &

# Run a command with DISPLAY=:1
DISPLAY=:1 <command>

pybind11-dev not found

wget http://archive.ubuntu.com/ubuntu/pool/universe/p/pybind11/pybind11-dev_2.2.4-2_all.deb
sudo apt install ./pybind11-dev_2.2.4-2_all.deb

ERROR: GLEW initalization error: Missing GL version

This issue is most likely due to running on a headless server.

Solution 1:

sudo mkdir -p /usr/lib/nvidia-000

Then add this line to ~/.bashrc file:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia-000

Solution 2:

1. First import and call mujocopy_render_hack in main.py
2. Follow the instructions in "Virtual display on headless machines" section
3. When running a script, remember to add DISPLAY:=1 <command> 

/usr/bin/ld: cannot find -lGL

Source: https://stackoverflow.com/questions/33447653/usr-bin-ld-cannot-find-lgl-ubuntu-14-04

sudo rm /usr/lib/x86_64-linux-gnu/libGL.so 
sudo ln -s /usr/lib/libGL.so.1 /usr/lib/x86_64-linux-gnu/libGL.so 

References

Citation

If you find this useful, please cite

@inproceedings{liu2021mopa,
  title={Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation},
  author={I-Chun Arthur Liu and Shagun Uppal and Gaurav S. Sukhatme and Joseph J. Lim and Peter Englert and Youngwoon Lee},
  booktitle={Conference on Robot Learning},
  year={2021}
}

Authors

I-Chun (Arthur) Liu*, Shagun Uppal*, Gaurav S. Sukhatme, Joseph J. Lim, Peter Englert, and Youngwoon Lee at USC CLVR and USC RESL (*Equal contribution)

Owner
Cognitive Learning for Vision and Robotics (CLVR) lab @ USC
Learning and Reasoning for Artificial Intelligence, especially focused on perception and action. Led by Professor Joseph J. Lim @ USC
Cognitive Learning for Vision and Robotics (CLVR) lab @ USC
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022