This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Overview

Mega-NeRF

This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewer.

The codebase for the Mega-NeRF-Dynamic viewer can be found here.

Note: This is a preliminary release and there may still be outstanding bugs.

Citation

@misc{turki2021meganerf,
      title={Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs}, 
      author={Haithem Turki and Deva Ramanan and Mahadev Satyanarayanan},
      year={2021},
      eprint={2112.10703},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Demo

Setup

conda env create -f environment.yml
conda activate mega-nerf

The codebase has been mainly tested against CUDA >= 11.1 and V100/2080 Ti/3090 Ti GPUs. 1080 Ti GPUs should work as well although training will be much slower.

Data

Mill 19

  • The Building scene can be downloaded here.
  • The Rubble scene can be downloaded here.

UrbanScene 3D

  1. Download the raw photo collections from the UrbanScene3D dataset
  2. Download the refined camera poses for one of the scenes below:
  1. Run python scripts/copy_images.py --image_path $RAW_PHOTO_PATH --dataset_path $CAMERA_POSE_PATH

Quad 6k Dataset

  1. Download the raw photo collections from here.
  2. Download the refined camera poses
  3. Run python scripts/copy_images.py --image_path $RAW_PHOTO_PATH --dataset_path $CAMERA_POSE_PATH

Custom Data

The expected directory structure is:

  • /coordinates.pt: Torch file that should contain the following keys:
    • 'origin_drb': Origin of scene in real-world units
    • 'pose_scale_factor': Scale factor mapping from real-world unit (ie: meters) to [-1, 1] range
  • '/{val|train}/rgbs/': JPEG or PNG images
  • '/{val|train}/metadata/': Image-specific image metadata saved as a torch file. Each image should have a corresponding metadata file with the following file format: {rgb_stem}.pt. Each metadata file should contain the following keys:
    • 'W': Image width
    • 'H': Image height
    • 'intrinsics': Image intrinsics in the following form: [fx, fy, cx, cy]
    • 'c2w': Camera pose. 3x3 camera matrix with the convention used in the original NeRF repo, ie: x: down, y: right, z: backwards, followed by the following transformation: torch.cat([camera_in_drb[:, 1:2], -camera_in_drb[:, :1], camera_in_drb[:, 2:4]], -1)

Training

  1. Generate the training partitions for each submodule: python scripts/create_cluster_masks.py --config configs/mega-nerf/${DATASET_NAME}.yml --dataset_path $DATASET_PATH --output $MASK_PATH --grid_dim $GRID_X $GRID_Y
    • Note: this can be run across multiple GPUs by instead running python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node $NUM_GPUS --max_restarts 0 scripts/create_cluster_masks.py
  2. Train each submodule: python mega_nerf/train.py --config_file configs/mega-nerf/${DATASET_NAME}.yml --exp_name $EXP_PATH --dataset_path $DATASET_PATH --chunk_paths $SCRATCH_PATH --cluster_mask_path ${MASK_PATH}/${SUBMODULE_INDEX}
    • Note: training with against full scale data will write hundreds of GBs / several TBs of shuffled data to disk. You can downsample the training data using train_scale_factor option.
    • Note: we provide a utility script based on parscript to start multiple training jobs in parallel. It can run through the following command: CONFIG_FILE=configs/mega-nerf/${DATASET_NAME}.yaml EXP_PREFIX=$EXP_PATH DATASET_PATH=$DATASET_PATH CHUNK_PREFIX=$SCRATCH_PATH MASK_PATH=$MASK_PATH python -m parscript.dispatcher parscripts/run_8.txt -g $NUM_GPUS
  3. Merge the trained submodules into a unified Mega-NeRF model: python scripts/merge_submodules.py --config_file configs/mega-nerf/${DATASET_NAME}.yaml --ckpt_prefix ${EXP_PREFIX}- --centroid_path ${MASK_PATH}/params.pt --output $MERGED_OUTPUT

Evaluation

Single-GPU evaluation: python mega_nerf/eval.py --config_file configs/nerf/${DATASET_NAME}.yaml --exp_name $EXP_NAME --dataset_path $DATASET_PATH --container_path $MERGED_OUTPUT

Multi-GPU evaluation: python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node $NUM_GPUS mega_nerf/eval.py --config_file configs/nerf/${DATASET_NAME}.yaml --exp_name $EXP_NAME --dataset_path $DATASET_PATH --container_path $MERGED_OUTPUT

Octree Extraction (for use by Mega-NeRF-Dynamic viewer)

python scripts/create_octree.py --config configs/mega-nerf/${DATASET_NAME}.yaml --dataset_path $DATASET_PATH --container_path $MERGED_OUTPUT --output $OCTREE_PATH

Acknowledgements

Large parts of this codebase are based on existing work in the nerf_pl, NeRF++, and Plenoctree repositories. We use svox to serialize our sparse voxel octrees and the generated structures should be largely compatible with that codebase.

Owner
cmusatyalab
cmusatyalab
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

ClusterGCN ⠀⠀ A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019). A

Benedek Rozemberczki 697 Dec 27, 2022
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
An open source implementation of CLIP.

OpenCLIP Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training). The goal of this repository is to enable

2.7k Dec 31, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022