GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Overview

Course title page

Course Description

The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine performance with simplicity and interactivity, enabling unprecedented productivity in HPC development. This course will discuss both basic and advanced topics relevant for single and Multi-GPU computing with Julia. It will focus on the CUDA.jl package, which enables writing native Julia code for GPUs. Topics covered include the following:

  • GPU array programming;
  • GPU kernel programming;
  • kernel launch parameters;
  • usage of on-chip memory;
  • Multi-GPU computing;
  • code reflection and introspection; and
  • diverse advanced optimization techniques.

This course combines lectures and hands-on sessions.

Target audience

This course addresses scientists interested in doing HPC using Julia. Previous Julia or GPU computing knowledge is not needed, but a good general understanding of programming is advantageous.

Instructors

  • Dr. Tim Besard (Lead developer of CUDA.jl, Julia Computing Inc.)
  • Dr. Samuel Omlin (Computational Scientist | Responsible for Julia computing, CSCS)

Course material

This git repository contains the material of day 1 and 2 (speaker: Dr. Samuel Omlin, CSCS). The material of day 3 and 4 is found in this git repository (speaker: Dr. Tim Besard, Julia Computing Inc.).

Course recording

The edited course recording is found here. The following list provides key entry points into the video.

Day 1:

00:00: Introduction to the course

05:02: General introduction to supercomputing

14:06: High-speed introduction to GPU computing

32:57: Walk through introduction notebook on memory copy and performance evaluation

Day 2:

1:24:53: Introduction to day 2

1:39:12: Walk through solutions of exercise 1 and 2 (data "transfer" optimisations)

2:34:12: Walk through solutions of exercise 3 and 4 (data "transfer" optimisations and distributed parallelization)

Day 3:

03:31:57: Introduction to day 3

03:32:59: Presentation of notebook 1: cuda libraries

04:24:31: Presentation of notebook 2: programming models

05:30:46: Presentation of notebook 3: memory management

06:03:48: Presentation of notebook 4: concurrent computing

Day 4:

06:27:15: Introduction to day 4

06:28:13: Presentation of notebook 5: application analysis and optimisation

07:35:08: Presentation of notebook 6: kernel analysis and optimisation

Owner
Samuel Omlin
Computational Scientist | Responsible for Julia computing, CSCS - Swiss National Supercomputing Centre
Samuel Omlin
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"

Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim

Billy 9 Aug 22, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022