Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Overview

Beyond the Spectrum

Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keuper and Mario Fritz.

Pretrained Models

We release the model trained on CelebA-HQ dataset with image resolution 1024x1024. For the super resolution, we use 25,000 real images from CelebA-HQ to train it. For the detectors, we use 25,000 real images and 25,000 fake images to train a binary classifier based on ResNet-50.

We release some models as examples to show how to apply our models based on pixel-level or stage5-level reconstruction errors to detect deepfakes. Download link: https://drive.google.com/file/d/1FeIgABjBpjtnXT-Hl6p5a5lpZxINzXwv/view?usp=sharing.

If you have further questions regarding the trained models, please feel free to contact.

Train

  1. Train the super resolution model.

We use Residual Dense Network (RDN) in our work. The following script shows the hyperparameters used in our experiments. To be noticed, we only use 4 images to show how to run the script. For simplicity, you can download the pretrained model from the above link.

bash script/train_super_resolution_celeba.sh [GPU_ID]
  1. Train the detectors.

After obtaining the super resolution, we use pixel-level or stage5-level L1 based recontruction error to train a classifier. The following scripts use 10 training example to show how to train a classifier with a given super resolution model. You may need to adjust the learning rate and number of training epochs in your case.

bash script/train_pixel_pggan.sh [GPU_ID]
  1. Finetune with auxiliary tasks

In order to improve the robustness of our detectors, we introduce auxiliary tasks (i.e., colorization or denoising) into the super resolution model training and finetune the whole model end-to-end. The following scripts show how to train a model with those tasks.

bash script/train_pixel_pggan_colorization.sh [GPU_ID]
bash script/train_stage5_stylegan_denoising.sh [GPU_ID]

Test

Please download our models. You can use pixel-level or stage5-level to perform deepfakes detection.

bash script/test_pixel_celeba.sh [GPU_ID]
bash script/test_stage5_celeba.sh [GPU_ID]

Citation

If our work is useful for you, please cite our paper:

@inproceedings{yang_ijcai21,
  title={Beyond the Spectrum: Detecting Deepfakes via Re-synthesis},
  author={Yang He and Ning Yu and Margret Keuper and Mario Fritz},
  booktitle={30th International Joint Conference on Artificial Intelligence (IJCAI)},
  year={2021}
}

Contact: Yang He ([email protected])

Last update: 08-22-2021

Owner
Yang He
Applied Scientist in Amazon Last Mile PostDoc in CISPA Helmholtz Center for Information Security / PhD in Max Planck Institute for Informatics
Yang He
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

François Darmon 167 Dec 30, 2022
Data reduction pipeline for KOALA on the AAT.

KOALA KOALA, the Kilofibre Optical AAT Lenslet Array, is a wide-field, high efficiency, integral field unit used by the AAOmega spectrograph on the 3.

4 Sep 26, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
A Python package for generating concise, high-quality summaries of a probability distribution

GoodPoints A Python package for generating concise, high-quality summaries of a probability distribution GoodPoints is a collection of tools for compr

Microsoft 28 Oct 10, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022