Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks

Overview

PWC

Continuous Sparsification

Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, proposed in [Winning the Lottery with Continuous Sparsification].

Requirements

Python 2/3, PyTorch == 1.1.0

Training a ResNet on CIFAR with Continuous Sparsification

The main.py script can be used to train a ResNet-18 on CIFAR-10 with Continuous Sparsification. By default it will perform 3 rounds of training, each round consisting of 85 epochs. With the default hyperparameter values for the mask initialization, mask penalty, and final temperature, the method will find a sub-network with 20-30% sparsity which achieves 91.5-92.0% test accuracy when trained after rewinding (the dense network achieves 90-91%). The training and rewinding protocols follow the ones in the Lottery Ticket Hypothesis papers by Frankle.

In general, the sparsity of the final sub-network can be controlled by changing the value used to initialize the soft mask parameters. This can be done with, for example:

python main.py --mask-initial-value 0.1

The default value is 0.0 and increasing it will result in less sparse sub-networks. High sparsity sub-networks can be found by setting it to -0.1.

Extending the code

To train other network models with Continuous Sparsification, the first step is to choose which layers you want to sparsify and then implement PyTorch modules that perform soft masking on its original parameters. This repository contains code for 2D convolutions with soft masking: the SoftMaskedConv2d module in models/layers.py:

class SoftMaskedConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, padding=1, stride=1, mask_initial_value=0.):
        super(SoftMaskedConv2d, self).__init__()
        self.mask_initial_value = mask_initial_value
        
        self.in_channels = in_channels
        self.out_channels = out_channels    
        self.kernel_size = kernel_size
        self.padding = padding
        self.stride = stride
        
        self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels, kernel_size, kernel_size))
        nn.init.xavier_normal_(self.weight)
        self.init_weight = nn.Parameter(torch.zeros_like(self.weight), requires_grad=False)
        self.init_mask()
        
    def init_mask(self):
        self.mask_weight = nn.Parameter(torch.Tensor(self.out_channels, self.in_channels, self.kernel_size, self.kernel_size))
        nn.init.constant_(self.mask_weight, self.mask_initial_value)

    def compute_mask(self, temp, ticket):
        scaling = 1. / sigmoid(self.mask_initial_value)
        if ticket: mask = (self.mask_weight > 0).float()
        else: mask = F.sigmoid(temp * self.mask_weight)
        return scaling * mask      
        
    def prune(self, temp):
        self.mask_weight.data = torch.clamp(temp * self.mask_weight.data, max=self.mask_initial_value)   

    def forward(self, x, temp=1, ticket=False):
        self.mask = self.compute_mask(temp, ticket)
        masked_weight = self.weight * self.mask
        out = F.conv2d(x, masked_weight, stride=self.stride, padding=self.padding)        
        return out
        
    def checkpoint(self):
        self.init_weight.data = self.weight.clone()       
        
    def rewind_weights(self):
        self.weight.data = self.init_weight.clone()

    def extra_repr(self):
        return '{}, {}, kernel_size={}, stride={}, padding={}'.format(
            self.in_channels, self.out_channels, self.kernel_size, self.stride, self.padding)

Extending it to other layers is straightforward, since you only need to change the init, init_mask and the forward methods. In init_mask, you should create a mask parameter (of PyTorch Parameter type) for each parameter set that you want to sparsify -- each mask parameter must have the same dimensions as the corresponding parameter.

    def init_mask(self):
        self.mask_weight = nn.Parameter(torch.Tensor(...))
        nn.init.constant_(self.mask_weight, self.mask_initial_value)

In the forward method, you need to compute the masked parameter for each parameter to be sparsified (e.g. masked weights for a Linear layer), and then compute the output of the layer with the corresponding PyTorch functional call (e.g. F.Linear for Linear layers). For example:

    def forward(self, x, temp=1, ticket=False):
        self.mask = self.compute_mask(temp, ticket)
        masked_weight = self.weight * self.mask
        out = F.linear(x, masked_weight)        
        return out

Once all the required layers have been implemented, it remains to implement the network which CS will sparsify. In models/networks.py, you can find code for the ResNet-18 and use it as base to implement other networks. In general, your network can inherit from MaskedNet instead of nn.Module and most of the required functionalities will be immediately available. What remains is to use the layers you implemented (the ones with soft masked paramaters) in your network, and remember to pass temp and ticket as additional inputs: temp is the current temperature of CS (assumed to be the attribute model.temp in main.py), while ticket is a boolean variable that controls whether the parameters' masks should be soft (ticket=False) or hard (ticket=True). Having ticket=True means that the mask will be binary and the masked parameters will actually be sparse. Use ticket=False for training (i.e. sub-network search) and ticket=True once you are done and want to evaluate the sparse sub-network.

Future plans

We plan to make the effort of applying CS to other layers/networks considerably smaller. This will be hopefully achieved by offering a function that receives a standard PyTorch Module object and returns another Module but with the mask parameters properly created and the forward passes overloaded to use masked parameters instead.

If there are specific functionalities that would help you in your research or in applying our method in general, feel free to suggest it and we will consider implementing it.

Citation

If you use our method for research purposes, please cite our work:

@article{ssm2019cs,
       author = {Savarese, Pedro and Silva, Hugo and Maire, Michael},
        title = {Winning the Lottery with Continuous Sparsification},
      journal = {arXiv:1912.04427},
         year = "2019"
}
Owner
Pedro Savarese
PhD student at TTIC
Pedro Savarese
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

A variational Bayesian method for similarity learning in non-rigid image registration We provide the source code and the trained models used in the re

daniel grzech 14 Nov 21, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021