Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Related tags

Deep LearningPASF
Overview

Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Beining Han,   Chongyi Zheng,   Harris Chan,   Keiran Paster,   Michael R. Zhang,   Jimmy Ba

paper

Summary: Deep Reinforcement Learning agents often face unanticipated environmental changes after deployment in the real world. These changes are often spurious and unrelated to the underlying problem, such as background shifts for visual input agents. Unfortunately, deep RL policies are usually sensitive to these changes and fail to act robustly against them. This resembles the problem of domain generalization in supervised learning. In this work, we study this problem for goal-conditioned RL agents. We propose a theoretical framework in the Block MDP setting that characterizes the generalizability of goal-conditioned policies to new environments. Under this framework, we develop a practical method PA-SkewFit (PASF) that enhances domain generalization.

@article{han2021learning,
  title={Learning Domain Invariant Representations in Goal-conditioned Block MDPs},
  author={Han, Beining and Zheng, Chongyi and Chan, Harris and Paster, Keiran and Zhang, Michael and Ba, Jimmy},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

Installation

Our code was adapted from rlkit and was tested on a Ubuntu 20.04 server.

This instruction assumes that you have already installed NVIDIA driver, Anaconda, and MuJoCo.

You'll need to get your own MuJoCo key if you want to use MuJoCo.

1. Create Anaconda environment

Install the included Anaconda environment

$ conda env create -f environment/pasf_env.yml
$ source activate pasf_env
(pasf_env) $ python

2. Download the goals

Download the goals from the following link and put it here: (PASF DIR)/multiworld/envs/mujoco.

$ ls (PASF DIR)/multiworld/envs/mujoco
... goals ... 
  1. (Optional) Speed up with GPU rendering

3. (Optional) Speed-up with GPU rendering

Note: GPU rendering for mujoco-py speeds up training a lot but consumes more GPU memory at the same time.

Check this Issues:

Remember to do this stuff with the mujoco-py package inside of your pasf_env.

Running Experiments

The following command run the PASF experiments for the four tasks: Reach, Door, Push, Pickup, in the learning curve respectively.

$ source activate pasf_env
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_reach_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_door_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_push_lc_exp.bash
(pasf_env) $ bash (PASF DIR)/bash_scripts/pasf_pickup_lc_exp.bash
  • The bash scripts only set equation, equation, and equation with the exact values we used for LC. But you can play with other hyperparameters in python scripts under (PASF DIR)/experiment.

  • Training and evaluation environments are chosen in python scripts for each task. You can find the backgrounds in (PASF DIR)/multiworld/core/background and domains in (PASF DIR)/multiworld/envs/assets/sawyer_xyz.

  • Results are recorded in progress.csv under (PASF DIR)/data/ and variant.json contains configuration for each experiment.

  • We simply set random seeds as 0, 1, 2, etc., and run experiments with 6-9 different seeds for each task.

  • Error and output logs can be found in (PASF DIR)/terminal_log.

Questions

If you have any questions, comments, or suggestions, please reach out to Beining Han ([email protected]) and Chongyi Zheng ([email protected]).

Owner
Chongyi Zheng
Chongyi Zheng
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
BABEL: Bodies, Action and Behavior with English Labels [CVPR 2021]

BABEL is a large dataset with language labels describing the actions being performed in mocap sequences. BABEL labels about 43 hours of mocap sequences from AMASS [1] with action labels.

113 Dec 28, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
MogFace: Towards a Deeper Appreciation on Face Detection

MogFace: Towards a Deeper Appreciation on Face Detection Introduction In this repo, we propose a promising face detector, termed as MogFace. Our MogFa

48 Dec 20, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022