The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Overview

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019)

News

Introduction

This is an official pytorch implementation of Deep High-Resolution Representation Learning for Human Pose Estimation. In this work, we are interested in the human pose estimation problem with a focus on learning reliable high-resolution representations. Most existing methods recover high-resolution representations from low-resolution representations produced by a high-to-low resolution network. Instead, our proposed network maintains high-resolution representations through the whole process. We start from a high-resolution subnetwork as the first stage, gradually add high-to-low resolution subnetworks one by one to form more stages, and connect the mutli-resolution subnetworks in parallel. We conduct repeated multi-scale fusions such that each of the high-to-low resolution representations receives information from other parallel representations over and over, leading to rich high-resolution representations. As a result, the predicted keypoint heatmap is potentially more accurate and spatially more precise. We empirically demonstrate the effectiveness of our network through the superior pose estimation results over two benchmark datasets: the COCO keypoint detection dataset and the MPII Human Pose dataset.

Illustrating the architecture of the proposed HRNet

Main Results

Results on MPII val

Arch Head Shoulder Elbow Wrist Hip Knee Ankle Mean [email protected]
pose_resnet_50 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5 34.0
pose_resnet_101 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1 34.0
pose_resnet_152 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6 35.0
pose_hrnet_w32 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3 37.7

Note:

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_resnet_50 256x192 34.0M 8.9 0.704 0.886 0.783 0.671 0.772 0.763 0.929 0.834 0.721 0.824
pose_resnet_50 384x288 34.0M 20.0 0.722 0.893 0.789 0.681 0.797 0.776 0.932 0.838 0.728 0.846
pose_resnet_101 256x192 53.0M 12.4 0.714 0.893 0.793 0.681 0.781 0.771 0.934 0.840 0.730 0.832
pose_resnet_101 384x288 53.0M 27.9 0.736 0.896 0.803 0.699 0.811 0.791 0.936 0.851 0.745 0.858
pose_resnet_152 256x192 68.6M 15.7 0.720 0.893 0.798 0.687 0.789 0.778 0.934 0.846 0.736 0.839
pose_resnet_152 384x288 68.6M 35.3 0.743 0.896 0.811 0.705 0.816 0.797 0.937 0.858 0.751 0.863
pose_hrnet_w32 256x192 28.5M 7.1 0.744 0.905 0.819 0.708 0.810 0.798 0.942 0.865 0.757 0.858
pose_hrnet_w32 384x288 28.5M 16.0 0.758 0.906 0.825 0.720 0.827 0.809 0.943 0.869 0.767 0.871
pose_hrnet_w48 256x192 63.6M 14.6 0.751 0.906 0.822 0.715 0.818 0.804 0.943 0.867 0.762 0.864
pose_hrnet_w48 384x288 63.6M 32.9 0.763 0.908 0.829 0.723 0.834 0.812 0.942 0.871 0.767 0.876

Note:

Results on COCO test-dev2017 with detector having human AP of 60.9 on COCO test-dev2017 dataset

Arch Input size #Params GFLOPs AP Ap .5 AP .75 AP (M) AP (L) AR AR .5 AR .75 AR (M) AR (L)
pose_resnet_152 384x288 68.6M 35.3 0.737 0.919 0.828 0.713 0.800 0.790 0.952 0.856 0.748 0.849
pose_hrnet_w48 384x288 63.6M 32.9 0.755 0.925 0.833 0.719 0.815 0.805 0.957 0.874 0.763 0.863
pose_hrnet_w48* 384x288 63.6M 32.9 0.770 0.927 0.845 0.734 0.831 0.820 0.960 0.886 0.778 0.877

Note:

Environment

The code is developed using python 3.6 on Ubuntu 16.04. NVIDIA GPUs are needed. The code is developed and tested using 4 NVIDIA P100 GPU cards. Other platforms or GPU cards are not fully tested.

Quick start

Installation

  1. Install pytorch >= v1.0.0 following official instruction. Note that if you use pytorch's version < v1.0.0, you should following the instruction at https://github.com/Microsoft/human-pose-estimation.pytorch to disable cudnn's implementations of BatchNorm layer. We encourage you to use higher pytorch's version(>=v1.0.0)

  2. Clone this repo, and we'll call the directory that you cloned as ${POSE_ROOT}.

  3. Install dependencies:

    pip install -r requirements.txt
    
  4. Make libs:

    cd ${POSE_ROOT}/lib
    make
    
  5. Install COCOAPI:

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    # Install into global site-packages
    make install
    # Alternatively, if you do not have permissions or prefer
    # not to install the COCO API into global site-packages
    python3 setup.py install --user
    

    Note that instructions like # COCOAPI=/path/to/install/cocoapi indicate that you should pick a path where you'd like to have the software cloned and then set an environment variable (COCOAPI in this case) accordingly.

  6. Init output(training model output directory) and log(tensorboard log directory) directory:

    mkdir output 
    mkdir log
    

    Your directory tree should look like this:

    ${POSE_ROOT}
    ├── data
    ├── experiments
    ├── lib
    ├── log
    ├── models
    ├── output
    ├── tools 
    ├── README.md
    └── requirements.txt
    
  7. Download pretrained models from our model zoo(GoogleDrive or OneDrive)

    ${POSE_ROOT}
     `-- models
         `-- pytorch
             |-- imagenet
             |   |-- hrnet_w32-36af842e.pth
             |   |-- hrnet_w48-8ef0771d.pth
             |   |-- resnet50-19c8e357.pth
             |   |-- resnet101-5d3b4d8f.pth
             |   `-- resnet152-b121ed2d.pth
             |-- pose_coco
             |   |-- pose_hrnet_w32_256x192.pth
             |   |-- pose_hrnet_w32_384x288.pth
             |   |-- pose_hrnet_w48_256x192.pth
             |   |-- pose_hrnet_w48_384x288.pth
             |   |-- pose_resnet_101_256x192.pth
             |   |-- pose_resnet_101_384x288.pth
             |   |-- pose_resnet_152_256x192.pth
             |   |-- pose_resnet_152_384x288.pth
             |   |-- pose_resnet_50_256x192.pth
             |   `-- pose_resnet_50_384x288.pth
             `-- pose_mpii
                 |-- pose_hrnet_w32_256x256.pth
                 |-- pose_hrnet_w48_256x256.pth
                 |-- pose_resnet_101_256x256.pth
                 |-- pose_resnet_152_256x256.pth
                 `-- pose_resnet_50_256x256.pth
    
    

Data preparation

For MPII data, please download from MPII Human Pose Dataset. The original annotation files are in matlab format. We have converted them into json format, you also need to download them from OneDrive or GoogleDrive. Extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- mpii
    `-- |-- annot
        |   |-- gt_valid.mat
        |   |-- test.json
        |   |-- train.json
        |   |-- trainval.json
        |   `-- valid.json
        `-- images
            |-- 000001163.jpg
            |-- 000003072.jpg

For COCO data, please download from COCO download, 2017 Train/Val is needed for COCO keypoints training and validation. We also provide person detection result of COCO val2017 and test-dev2017 to reproduce our multi-person pose estimation results. Please download from OneDrive or GoogleDrive. Download and extract them under {POSE_ROOT}/data, and make them look like this:

${POSE_ROOT}
|-- data
`-- |-- coco
    `-- |-- annotations
        |   |-- person_keypoints_train2017.json
        |   `-- person_keypoints_val2017.json
        |-- person_detection_results
        |   |-- COCO_val2017_detections_AP_H_56_person.json
        |   |-- COCO_test-dev2017_detections_AP_H_609_person.json
        `-- images
            |-- train2017
            |   |-- 000000000009.jpg
            |   |-- 000000000025.jpg
            |   |-- 000000000030.jpg
            |   |-- ... 
            `-- val2017
                |-- 000000000139.jpg
                |-- 000000000285.jpg
                |-- 000000000632.jpg
                |-- ... 

Training and Testing

Testing on MPII dataset using model zoo's models(GoogleDrive or OneDrive)

python tools/test.py \
    --cfg experiments/mpii/hrnet/w32_256x256_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pytorch/pose_mpii/pose_hrnet_w32_256x256.pth

Training on MPII dataset

python tools/train.py \
    --cfg experiments/mpii/hrnet/w32_256x256_adam_lr1e-3.yaml

Testing on COCO val2017 dataset using model zoo's models(GoogleDrive or OneDrive)

python tools/test.py \
    --cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml \
    TEST.MODEL_FILE models/pytorch/pose_coco/pose_hrnet_w32_256x192.pth \
    TEST.USE_GT_BBOX False

Training on COCO train2017 dataset

python tools/train.py \
    --cfg experiments/coco/hrnet/w32_256x192_adam_lr1e-3.yaml \

Visualization

Visualizing predictions on COCO val

python visualization/plot_coco.py \
    --prediction output/coco/w48_384x288_adam_lr1e-3/results/keypoints_val2017_results_0.json \
    --save-path visualization/results

Other applications

Many other dense prediction tasks, such as segmentation, face alignment and object detection, etc. have been benefited by HRNet. More information can be found at High-Resolution Networks.

Other implementation

mmpose

Citation

If you use our code or models in your research, please cite with:

@inproceedings{sun2019deep,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={CVPR},
  year={2019}
}

@inproceedings{xiao2018simple,
    author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
    title={Simple Baselines for Human Pose Estimation and Tracking},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year = {2018}
}

@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and 
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and 
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal   = {TPAMI}
  year={2019}
}
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D)

Conjugated Discrete Distributions for Distributional Reinforcement Learning (C2D) Code & Data Appendix for Conjugated Discrete Distributions for Distr

1 Jan 11, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

QQ Browser 2021 AI Algorithm Competition Track 1 1st Place Program

249 Jan 03, 2023
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
Official repository for the paper F, B, Alpha Matting

FBA Matting Official repository for the paper F, B, Alpha Matting. This paper and project is under heavy revision for peer reviewed publication, and s

Marco Forte 404 Jan 05, 2023
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023