Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

Related tags

Deep LearningATLOP
Overview

ATLOP

Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling.

If you make use of this code in your work, please kindly cite the following paper:

@inproceedings{zhou2021atlop,
	title={Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling},
	author={Zhou, Wenxuan and Huang, Kevin and Ma, Tengyu and Huang, Jing},
	booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
	year={2021}
}

Requirements

  • Python (tested on 3.7.4)
  • CUDA (tested on 10.2)
  • PyTorch (tested on 1.7.0)
  • Transformers (tested on 3.4.0)
  • numpy (tested on 1.19.4)
  • apex (tested on 0.1)
  • opt-einsum (tested on 3.3.0)
  • wandb
  • ujson
  • tqdm

Dataset

The DocRED dataset can be downloaded following the instructions at link. The CDR and GDA datasets can be obtained following the instructions in edge-oriented graph. The expected structure of files is:

ATLOP
 |-- dataset
 |    |-- docred
 |    |    |-- train_annotated.json        
 |    |    |-- train_distant.json
 |    |    |-- dev.json
 |    |    |-- test.json
 |    |-- cdr
 |    |    |-- train_filter.data
 |    |    |-- dev_filter.data
 |    |    |-- test_filter.data
 |    |-- gda
 |    |    |-- train.data
 |    |    |-- dev.data
 |    |    |-- test.data
 |-- meta
 |    |-- rel2id.json

Training and Evaluation

DocRED

Train the BERT model on DocRED with the following command:

>> sh scripts/run_bert.sh  # for BERT
>> sh scripts/run_roberta.sh  # for RoBERTa

The training loss and evaluation results on the dev set are synced to the wandb dashboard.

The program will generate a test file result.json in the official evaluation format. You can compress and submit it to Colab for the official test score.

CDR and GDA

Train CDA and GDA model with the following command:

>> sh scripts/run_cdr.sh  # for CDR
>> sh scripts/run_gda.sh  # for GDA

The training loss and evaluation results on the dev and test set are synced to the wandb dashboard.

Saving and Evaluating Models

You can save the model by setting the --save_path argument before training. The model correponds to the best dev results will be saved. After that, You can evaluate the saved model by setting the --load_path argument, then the code will skip training and evaluate the saved model on benchmarks. I've also released the trained atlop-bert-base and atlop-roberta models.

Comments
  • The results of ATLOP based on the bert-base-cased model on the DocRED dataset

    The results of ATLOP based on the bert-base-cased model on the DocRED dataset

    Hello, I retrained ATLOP based on the bert-base-cased model on the DocRED dataset. However, the max F1 and F1_ign score on the dev dataset is 58.81 and 57.09, respectively. However, these scores are much lower than the reported score in your paper (61.09, 59.22). Is the default model config correct? My environment is as follows: Best regards

    Python 3.7.8
    PyTorch 1.4.0
    Transformers 3.3.1
    apex 0.1
    opt-einsum 3.3.0
    
    opened by donghaozhang95 11
  • The main purpose of the function: get_label

    The main purpose of the function: get_label

    Hi @wzhouad ,

    Thanks so much for releasing your source code. I only wonder about the main purpose of the function get_label() in the file losses.py in calculating the final loss. Could you please explain it? Thanks for your help!

    opened by angelotran05 5
  • model.py

    model.py

    When I run train.py, there is an err in model.py:

    line 45, in get_hrt e_att.append(attention[i, :, start + offset])
    IndexError: too many indices for tensor of dimension 1

    Thanks.

    opened by qiunlp 5
  • Mention embedding

    Mention embedding

    Hi there, thanks for your nice work. I'm a bit confused that in the function get_hrt(), do you use the embedding of the first subword token as the mention embedding instead of summing up all the wordpieces? So the offset used here is due to the insertion of especial token "*" ? Please correct me if I'm wrong, thanks!

    opened by mk2x15 4
  • about the labels

    about the labels

    I see there a line of code before output the loss that is if labels is not None: labels = [torch.tensor(label) for label in labels] labels = torch.cat(labels, dim=0).to(logits) loss = self.loss_fnt(logits.float(), labels.float()) output = (loss.to(sequence_output),) + output

    and i also tried why sometimes the label could be none??? am I got something wrong?

    opened by ChristopherAmadeusMiao 4
  • The best results of same random seed are different at each time  when I trained the ATLOP

    The best results of same random seed are different at each time when I trained the ATLOP

    Hello I trained the ATLOP with same random seed=66 every time, but the final best result are different. Have you met the same situation before? thank you for your replying.

    opened by Lanyu123 4
  • Any plans to release the codes for CDR?

    Any plans to release the codes for CDR?

    Hello Zhou

    Thank you for releasing the codes of your work. In your paper, it has the experiment results on CDR. I want to reproduce the performance using the CDR dataset on your approach. Do you have any plans to release the codes for CDR?

    opened by mjeensung 4
  • About the process_long_input.py

    About the process_long_input.py

    I got the error, could you help me ? thank you!

    Traceback (most recent call last): File "train.py", line 228, in main() File "train.py", line 216, in main train(args, model, train_features, dev_features, test_features) File "train.py", line 74, in train finetune(train_features, optimizer, args.num_train_epochs, num_steps) File "train.py", line 38, in finetune outputs = model(**inputs) File "D:\Anaconda\envs\pytorch-GPU\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "D:\code\ATLOP\model.py", line 95, in forward sequence_output, attention = self.encode(input_ids, attention_mask) File "D:\code\ATLOP\model.py", line 32, in encode sequence_output, attention = process_long_input(self.model, input_ids, attention_mask, start_tokens, end_tokens) File "D:\code\ATLOP\long_seq.py", line 17, in process_long_input output_attentions=True, File "D:\Anaconda\envs\pytorch-GPU\lib\site-packages\torch\nn\modules\module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) TypeError: forward() got an unexpected keyword argument 'output_attentions'

    opened by MingYang1127 3
  • Can you please release trained model?

    Can you please release trained model?

    Hi. Thank you for releasing the codes of your model, it is really helpful.

    However I tried to retrain ATLOP based on the bert-base-cased model on the DocRED dataset but I can't get high result as your result on the paper. And I can't retrain roberta-large model because I don't have strong enough GPU (strongest GPU on Google Colab is V100). So can you please release your trained model. I would be very very happy if you can release your model, and I believe that it can help many other people, too.

    Thank you so much.

    opened by nguyenhuuthuat09 3
  • Where did the

    Where did the "/meta/rel2id.json" come from?

    I only want to use DocRED dataset,and there is only "rel_info.json" in it. Could you please tell me how can I get rel2id.json?I try to rename rel_info.json to rel2id.json but ValueError: invalid literal for int() with base 10: 'headquarters location' occured in File "train.py", line 197, in main train_features = read(train_file, tokenizer, max_seq_length=args.max_seq_length) File "/home/kw/ATLOP/prepro.py", line 56, in read_docred r = int(docred_rel2id[label['r']]) Thanks for your attention,I'm waiting for your reply.

    opened by AQA6666 2
  • How should I be running the Enhanced BERT Baseline model?

    How should I be running the Enhanced BERT Baseline model?

    Hi. I recently tried to run the Enhanced BERT Baseline model (i.e., without adaptive threshold loss and local contextualized pooling) and just wanted to confirm if I'm doing it right.

    Basically, in model.py lines 86-111 (i.e., the forward method) I modified the code so that I don't use rs and changed self.head_extractor and self.tail_extractor to have in_features and out_features accordingly. I did this because I'm assuming that within the get_hrt method, rs is what LOP is since we're using attention there. Modifying the extractors also implies that I'm not concatenating hs and ts with rs.

    After that I changed loss_fnt to be a simple nn.BCEWithLogitsLoss rather than ATLoss. That means I also changed the get_label method within ATLoss to be a function so that I'm not depending on the class.

    Am I doing this right? Or is there another way that I should be implementing it?

    The reason why I'm suspicious as to whether I implemented this correctly or not is because I'm currently running the code on the TACRED dataset rather than the DocRED dataset, and while ATLOP itself shows satisfactory performance the performance of the Enhanced BERT Baseline is much lower.

    Thanks.

    opened by seanswyi 2
  • The usage of the ATLoss

    The usage of the ATLoss

    Thanks for your amazing work! I am very interested in the ATLoss, but there is a little question I want to ask. When using the ATLoss, should we add a no-relation label? For example, there are 26 relation types, the gold labels may contain multiple relation types, but at least one relation type. How to represent the no-relation? Show I create a tensor of size 27 and set the first label 1 or a tensor of size 26 and set all the labels zero? Look forward to your reply. Many Thanks,

    opened by Onion12138 0
  • --save_path issue

    --save_path issue

    I edit the script file and add --save_path followed by the directory. I can't see any saved models after running the script. Could you please explain how to save a model in detail?

    opened by rijukandathil 0
Owner
Wenxuan Zhou
Ph.D. student at University of Southern California
Wenxuan Zhou
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022