Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

Overview

UNICORN 🦄

Webpage | Paper | BibTex

car.gif bird.gif moto.gif

PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper, check out our webpage for details!

If you find this code useful, don't forget to star the repo and cite the paper:

@article{monnier2022unicorn,
  title={{Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance 
  Consistency}},
  author={Monnier, Tom and Fisher, Matthew and Efros, Alexei A and Aubry, Mathieu},
  journal={arXiv:2204.10310 [cs]},
  year={2022},
}

Installation 👷

1. Create conda environment 🔧

conda env create -f environment.yml
conda activate unicorn

Optional: some monitoring routines are implemented, you can use them by specifying your visdom port in the config file. You will need to install visdom from source beforehand

git clone https://github.com/facebookresearch/visdom
cd visdom && pip install -e .

2. Download datasets ⬇️

bash scripts/download_data.sh

This command will download one of the following datasets:

3. Download pretrained models ⬇️

bash scripts/download_model.sh

This command will download one of the following models:

NB: it may happen that gdown hangs, if so you can download them manually with the gdrive links and move them to the models folder.

How to use 🚀

1. 3D reconstruction of car images 🚘

ex_car.png ex_rec.gif

You first need to download the car model (see above), then launch:

cuda=gpu_id model=car.pkl input=demo ./scripts/reconstruct.sh

where:

  • gpu_id is a target cuda device id,
  • car.pkl corresponds to a pretrained model,
  • demo is a folder containing the target images.

It will create a folder demo_rec containing the reconstructed meshes (.obj format + gif visualizations).

2. Reproduce our results 📊

shapenet.gif

To launch a training from scratch, run:

cuda=gpu_id config=filename.yml tag=run_tag ./scripts/pipeline.sh

where:

  • gpu_id is a target cuda device id,
  • filename.yml is a YAML config located in configs folder,
  • run_tag is a tag for the experiment.

Results are saved at runs/${DATASET}/${DATE}_${run_tag} where DATASET is the dataset name specified in filename.yml and DATE is the current date in mmdd format. Some training visual results like reconstruction examples will be saved. Available configs are:

  • sn/*.yml for each ShapeNet category
  • car.yml for CompCars dataset
  • cub.yml for CUB-200 dataset
  • horse.yml for LSUN Horse dataset
  • moto.yml for LSUN Motorbike dataset
  • p3d_car.yml for Pascal3D+ Car dataset

3. Train on a custom dataset 🔮

If you want to learn a model for a custom object category, here are the key things you need to do:

  1. put your images in a custom_name folder inside the datasets folder
  2. write a config custom.yml with custom_name as dataset.name and move it to the configs folder: as a rule of thumb for the progressive conditioning milestones, put the number of epochs corresponding to 500k iterations for each stage
  3. launch training with:
cuda=gpu_id config=custom.yml tag=custom_run_tag ./scripts/pipeline.sh

Further information 📚

If you like this project, check out related works from our group:

A simple editor for captions in .SRT file extension

WaySRT A simple editor for captions in .SRT file extension The program doesn't use any external dependecies, just run: python way_srt.py {file_name.sr

Gustavo Lopes 3 Nov 16, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

Implementation of "Distribution Alignment: A Unified Framework for Long-tail Visual Recognition"(CVPR 2021)

105 Nov 07, 2022
[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Social-NCE + CrowdNav Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN This is an official implementation for Social NCE: Contr

VITA lab at EPFL 125 Dec 23, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022