Pytorch Implementation of paper "Noisy Natural Gradient as Variational Inference"

Overview

Noisy Natural Gradient as Variational Inference

PyTorch implementation of Noisy Natural Gradient as Variational Inference.

Requirements

  • Python 3
  • Pytorch
  • visdom

Comments

  • This paper is about how to optimize bayesian neural network which has matrix variate gaussian distribution.
  • This implementation contains Noisy Adam optimizer which is for Fully Factorized Gaussian(FFG) distribution, and Noisy KFAC optimizer which is for Matrix Variate Gaussian(MVG) distribution.
  • These optimizers only work with bayesian network which has specific structure that I will mention below.
  • Currently only linear layer is available.

Experimental comments

  • I addded a lr scheduler to noisy KFAC because loss is exploded during training. I guess this happens because of slight approximation.
  • For MNIST training noisy KFAC is 15-20x slower than noisy Adam, as mentioned in paper.
  • I guess the noisy KFAC needs more epochs to train simple neural network structure like 2 linear layers.

Usage

Currently only MNIST dataset are currently supported, and only fully connected layer is implemented.

Options

  • model : Fully Factorized Gaussian(FFG) or Matrix Variate Gaussian(MVG)
  • n : total train dataset size. need this value for optimizer.
  • eps : parameter for optimizer. Default to 1e-8.
  • initial_size : initial input tensor size. Default to 784, size of MNIST data.
  • label_size : label size. Default to 10, size of MNIST label.

More details in option_parser.py

Train

$ python train.py --model=FFG --batch_size=100 --lr=1e-3 --dataset=MNIST
$ python train.py --model=MVG --batch_size=100 --lr=1e-2 --dataset=MNIST --n=60000

Visualize

  • To visualize intermediate results and loss plots, run python -m visdom.server and go to the URL http://localhost:8097

Test

$ python test.py --epoch=20

Training Graphs

1. MNIST

  • network is consist of 2 linear layers.
  • FFG optimized by noisy Adam : epoch 20, lr 1e-3

  • MVG optimized by noisy KFAC : epoch 100, lr 1e-2, decay 0.1 for every 30 epochs
  • Need to tune learning rate.

Implementation detail

  • Optimizing parameter procedure is consists of 2 steps, Calculating gradient and Applying to bayeisan parameters.
  • Before forward, network samples parameters with means & variances.
  • Usually calling step function updates parameters, but not this case. After calling step function, you have to update bayesian parameters. Look at the ffg_model.py

TODOs

  • More benchmark cases
  • Supports bayesian convolution
  • Implement Block Tridiagonal Covariance, which is dependent between layers.

Code reference

Visualization code(visualizer.py, utils.py) references to pytorch-CycleGAN-and-pix2pix(https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) by Jun-Yan Zhu

Author

Tony Kim

Owner
Tony JiHyun Kim
CEO/Tech Lead @PostAlpine Co., Ltd.
Tony JiHyun Kim
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 07, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Set of models for classifcation of 3D volumes

Classification models 3D Zoo - Keras and TF.Keras This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNet

69 Dec 28, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022